Author
Listed:
- Ahmet Celikoglu
- Ugur Tirnakli
Abstract
In a recent paper [\textit{M. Cristelli, A. Zaccaria and L. Pietronero, Phys. Rev. E 85, 066108 (2012)}], Cristelli \textit{et al.} analysed relation between skewness and kurtosis for complex dynamical systems and identified two power-law regimes of non-Gaussianity, one of which scales with an exponent of 2 and the other is with $4/3$. Finally the authors concluded that the observed relation is a universal fact in complex dynamical systems. Here, we test the proposed universal relation between skewness and kurtosis with large number of synthetic data and show that in fact it is not universal and originates only due to the small number of data points in the data sets considered. The proposed relation is tested using two different non-Gaussian distributions, namely $q$-Gaussian and Levy distributions. We clearly show that this relation disappears for sufficiently large data sets provided that the second moment of the distribution is finite. We find that, contrary to the claims of Cristelli \textit{et al.} regarding a power-law scaling regime, kurtosis saturates to a single value, which is of course different from the Gaussian case ($K=3$), as the number of data is increased. On the other hand, if the second moment of the distribution is infinite, then the kurtosis seems to never converge to a single value. The converged kurtosis value for the finite second moment distributions and the number of data points needed to reach this value depend on the deviation of the original distribution from the Gaussian case. We also argue that the use of kurtosis to compare distributions to decide which one deviates from the Gaussian more can lead to incorrect results even for finite second moment distributions for small data sets, whereas it is totally misleading for infinite second moment distributions where the difference depends on $N$ for all finite $N$.
Suggested Citation
Ahmet Celikoglu & Ugur Tirnakli, 2014.
"Skewness and kurtosis analysis for non-Gaussian distributions,"
Papers
1412.1293, arXiv.org.
Handle:
RePEc:arx:papers:1412.1293
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1412.1293. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.