IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1407.5877.html
   My bibliography  Save this paper

Linear vector optimization and European option pricing under proportional transaction costs

Author

Listed:
  • Alet Roux
  • Tomasz Zastawniak

Abstract

A method for pricing and superhedging European options under proportional transaction costs based on linear vector optimisation and geometric duality developed by Lohne & Rudloff (2014) is compared to a special case of the algorithms for American type derivatives due to Roux & Zastawniak (2014). An equivalence between these two approaches is established by means of a general result linking the support function of the upper image of a linear vector optimisation problem with the lower image of the dual linear optimisation problem.

Suggested Citation

  • Alet Roux & Tomasz Zastawniak, 2014. "Linear vector optimization and European option pricing under proportional transaction costs," Papers 1407.5877, arXiv.org.
  • Handle: RePEc:arx:papers:1407.5877
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1407.5877
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter Schachermayer, 2004. "The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 19-48, January.
    2. Alet Roux & Tomasz Zastawniak, 2011. "American and Bermudan options in currency markets under proportional transaction costs," Papers 1108.1910, arXiv.org, revised Jun 2014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alet Roux & Tomasz Zastawniak, 2013. "American options with gradual exercise under proportional transaction costs," Papers 1308.2688, arXiv.org.
    2. Erhan Bayraktar & Yuchong Zhang, 2016. "Fundamental Theorem of Asset Pricing Under Transaction Costs and Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1039-1054, August.
    3. Takaki Hayashi & Yuta Koike, 2017. "No arbitrage and lead-lag relationships," Papers 1712.09854, arXiv.org.
    4. Cosimo Munari, 2020. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Papers 2009.04151, arXiv.org.
    5. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    6. Tomasz R. Bielecki & Igor Cialenco & Ismail Iyigunler & Rodrigo Rodriguez, 2012. "Dynamic Conic Finance: Pricing and Hedging in Market Models with Transaction Costs via Dynamic Coherent Acceptability Indices," Papers 1205.4790, arXiv.org, revised Jun 2013.
    7. Bentahar, Imen & Bouchard, Bruno, 2005. "Explicit characterization of the super-replication strategy in financial markets with partial transaction costs," SFB 649 Discussion Papers 2005-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Christoph Kuhn, 2023. "The fundamental theorem of asset pricing with and without transaction costs," Papers 2307.00571, arXiv.org, revised Aug 2024.
    9. Patrick Bei{ss}ner, 2012. "Coherent Price Systems and Uncertainty-Neutral Valuation," Papers 1202.6632, arXiv.org.
    10. Jan Kallsen & Johannes Muhle-Karbe, 2011. "Existence of shadow prices in finite probability spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 251-262, April.
    11. Kaval, K. & Molchanov, I., 2006. "Link-save trading," Journal of Mathematical Economics, Elsevier, vol. 42(6), pages 710-728, September.
    12. Gil-Bazo, Javier, 2005. "Market imperfections, discount factors and stochastic dominance: an empirical analysis with oil-linked derivatives," DEE - Working Papers. Business Economics. WB wb055013, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    13. Emmanuel Denis & Yuri Kabanov, 2012. "Consistent price systems and arbitrage opportunities of the second kind in models with transaction costs," Finance and Stochastics, Springer, vol. 16(1), pages 135-154, January.
    14. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    15. Patrick Cheridito & Michael Kupper & Ludovic Tangpi, 2016. "Duality formulas for robust pricing and hedging in discrete time," Papers 1602.06177, arXiv.org, revised Sep 2017.
    16. Martin Brown & Tomasz Zastawniak, 2020. "Fundamental Theorem of Asset Pricing under fixed and proportional transaction costs," Annals of Finance, Springer, vol. 16(3), pages 423-433, September.
    17. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2013. "Measuring risk with multiple eligible assets," Papers 1308.3331, arXiv.org, revised Mar 2014.
    18. Yan Dolinsky & Halil Soner, 2013. "Duality and convergence for binomial markets with friction," Finance and Stochastics, Springer, vol. 17(3), pages 447-475, July.
    19. Stefan Gerhold & I. Cetin Gulum, 2016. "Consistency of option prices under bid-ask spreads," Papers 1608.05585, arXiv.org, revised Jul 2019.
    20. Tomasz Zastawniak, 2024. "Fundamental Theorem of Asset Pricing under fixed and proportional costs in multi-asset setting and finite probability space," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 137-149, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1407.5877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.