IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1406.7526.html
   My bibliography  Save this paper

Predictability of Volatility Homogenised Financial Time Series

Author

Listed:
  • Pawe{l} Fiedor
  • Odd Magnus Trondrud

Abstract

Modelling financial time series as a time change of a simpler process has been proposed in various forms over the years. One of such recent approaches is called volatility homogenisation decomposition, and has been designed specifically to aid the forecasting of price changes on financial markets. The authors of this method have attempted to prove the its usefulness by applying a specific forecasting procedure and determining the effectiveness of this procedure on the decomposed time series, as compared with the original time series. This is problematic in at least two ways. First, the choice of the forecasting procedure obviously has an effect on the results, rendering them non-exhaustive. Second, the results obtained were not completely convincing, with some values falling under 50% guessing rate. Additionally, only nine Australian stocks were being investigated, which further limits the scope of this proof. In this study we propose to find the usefulness of volatility homogenisation by calculating the predictability of the decomposed time series and comparing it to the predictability of the original time series. We are applying information-theoretic notion of entropy rate to quantify predictability, which guarantees the result is not tied to a specific method of prediction, and additionally we base our calculations on a large number of stocks from the Warsaw Stock Exchange.

Suggested Citation

  • Pawe{l} Fiedor & Odd Magnus Trondrud, 2014. "Predictability of Volatility Homogenised Financial Time Series," Papers 1406.7526, arXiv.org.
  • Handle: RePEc:arx:papers:1406.7526
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1406.7526
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1406.7526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.