IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1406.0824.html
   My bibliography  Save this paper

Supervised classification-based stock prediction and portfolio optimization

Author

Listed:
  • Sercan Arik
  • Sukru Burc Eryilmaz
  • Adam Goldberg

Abstract

As the number of publicly traded companies as well as the amount of their financial data grows rapidly, it is highly desired to have tracking, analysis, and eventually stock selections automated. There have been few works focusing on estimating the stock prices of individual companies. However, many of those have worked with very small number of financial parameters. In this work, we apply machine learning techniques to address automated stock picking, while using a larger number of financial parameters for individual companies than the previous studies. Our approaches are based on the supervision of prediction parameters using company fundamentals, time-series properties, and correlation information between different stocks. We examine a variety of supervised learning techniques and found that using stock fundamentals is a useful approach for the classification problem, when combined with the high dimensional data handling capabilities of support vector machine. The portfolio our system suggests by predicting the behavior of stocks results in a 3% larger growth on average than the overall market within a 3-month time period, as the out-of-sample test suggests.

Suggested Citation

  • Sercan Arik & Sukru Burc Eryilmaz & Adam Goldberg, 2014. "Supervised classification-based stock prediction and portfolio optimization," Papers 1406.0824, arXiv.org.
  • Handle: RePEc:arx:papers:1406.0824
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1406.0824
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1406.0824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.