IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.7747.html
   My bibliography  Save this paper

Does the "uptick rule" stabilize the stock market? Insights from Adaptive Rational Equilibrium Dynamics

Author

Listed:
  • Fabio Dercole
  • Davide Radi

Abstract

This paper investigates the effects of the "uptick rule" (a short selling regulation formally known as rule 10a-1) by means of a simple stock market model, based on the ARED (adaptive rational equilibrium dynamics) modeling framework, where heterogeneous and adaptive beliefs on the future prices of a risky asset were first shown to be responsible for endogenous price fluctuations. The dynamics of stock prices generated by the model, with and without the uptick-rule restriction, are analyzed by pairing the classical fundamental prediction with beliefs based on both linear and nonlinear technical analyses. The comparison shows a reduction of downward price movements of undervalued shares when the short selling restriction is imposed. This gives evidence that the uptick rule meets its intended objective. However, the effects of the short selling regulation fade when the intensity of choice to switch trading strategies is high. The analysis suggests possible side effects of the regulation on price dynamics.

Suggested Citation

  • Fabio Dercole & Davide Radi, 2014. "Does the "uptick rule" stabilize the stock market? Insights from Adaptive Rational Equilibrium Dynamics," Papers 1405.7747, arXiv.org.
  • Handle: RePEc:arx:papers:1405.7747
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.7747
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tramontana, Fabio & Westerhoff, Frank & Gardini, Laura, 2010. "On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 187-205, June.
    2. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    3. Dieci, Roberto & Foroni, Ilaria & Gardini, Laura & He, Xue-Zhong, 2006. "Market mood, adaptive beliefs and asset price dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 520-534.
    4. Fabio Tramontana & Laura Gardini & Frank Westerhoff, 2011. "Heterogeneous Speculators and Asset Price Dynamics: Further Results from a One-Dimensional Discontinuous Piecewise-Linear Map," Computational Economics, Springer;Society for Computational Economics, vol. 38(3), pages 329-347, October.
    5. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.
    6. Chiarella, Carl & He, Xue-Zhong, 2002. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 95-132, February.
    7. Chiarella, Carl & He, Xue-Zhong, 2003. "Dynamics of beliefs and learning under aL-processes -- the heterogeneous case," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 503-531, January.
    8. Arturo Bris & William N. Goetzmann & Ning Zhu, 2007. "Efficiency and the Bear: Short Sales and Markets Around the World," Journal of Finance, American Finance Association, vol. 62(3), pages 1029-1079, June.
    9. Andrea Gaunersdorfer & Cars Hommes & Florian Wagener, 2001. "Adaptive Beliefs and the volatility of asset prices," CeNDEF Workshop Papers, January 2001 5A.1, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    10. Diamond, Douglas W. & Verrecchia, Robert E., 1987. "Constraints on short-selling and asset price adjustment to private information," Journal of Financial Economics, Elsevier, vol. 18(2), pages 277-311, June.
    11. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    12. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    13. Alexander, Gordon J. & Peterson, Mark A., 1999. "Short Selling on the New York Stock Exchange and the Effects of the Uptick Rule," Journal of Financial Intermediation, Elsevier, vol. 8(1-2), pages 90-116, January.
    14. Miller, Edward M, 1977. "Risk, Uncertainty, and Divergence of Opinion," Journal of Finance, American Finance Association, vol. 32(4), pages 1151-1168, September.
    15. Gian Italo Bischi & Carl Chiarella & Iryna Sushko (ed.), 2013. "Global Analysis of Dynamic Models in Economics and Finance," Springer Books, Springer, edition 127, number 978-3-642-29503-4, December.
    16. Gaunersdorfer, Andrea, 2000. "Endogenous fluctuations in a simple asset pricing model with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 799-831, June.
    17. J. Michael Harrison & David M. Kreps, 1978. "Speculative Investor Behavior in a Stock Market with Heterogeneous Expectations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 92(2), pages 323-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Mignot & Fabio Tramontana & Frank Westerhoff, 2021. "Speculative asset price dynamics and wealth taxes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 641-667, December.
    2. Giovanni Campisi & Silvia Muzzioli & Fabio Tramontana, 2021. "Uncertainty about fundamental, pessimistic and overconfident traders: a piecewise-linear maps approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 707-726, December.
    3. in ׳t Veld, Daan, 2016. "Adverse effects of leverage and short-selling constraints in a financial market model with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 45-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dercole, Fabio & Radi, Davide, 2020. "Does the “uptick rule” stabilize the stock market? Insights from adaptive rational equilibrium dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    3. Anufriev, Mikhail & Tuinstra, Jan, 2013. "The impact of short-selling constraints on financial market stability in a heterogeneous agents model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1523-1543.
    4. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    5. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    6. Xue-Zhong He & Youwei Li, 2008. "Heterogeneity, convergence, and autocorrelations," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 59-79.
    7. Chiarella, Carl & He, Xue-Zhong, 2003. "Heterogeneous Beliefs, Risk, And Learning In A Simple Asset-Pricing Model With A Market Maker," Macroeconomic Dynamics, Cambridge University Press, vol. 7(4), pages 503-536, September.
    8. Dieci, Roberto & Foroni, Ilaria & Gardini, Laura & He, Xue-Zhong, 2006. "Market mood, adaptive beliefs and asset price dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 520-534.
    9. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    10. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    11. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    12. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    13. Tai, Chung-Ching & Chen, Shu-Heng & Yang, Lee-Xieng, 2018. "Cognitive ability and earnings performance: Evidence from double auction market experiments," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 409-440.
    14. Hommes, Cars & Kiseleva, Tatiana & Kuznetsov, Yuri & Verbic, Miroslav, 2012. "Is More Memory In Evolutionary Selection (De)Stabilizing?," Macroeconomic Dynamics, Cambridge University Press, vol. 16(3), pages 335-357, June.
    15. Carl Chiarella & Xue-Zhong He & Duo Wang, 2004. "Statistical Properties of a Heterogeneous Asset Price Model with Time-Varying Second Moment," Research Paper Series 142, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. He, Xue-Zhong & Li, Youwei & Zheng, Min, 2019. "Heterogeneous agent models in financial markets: A nonlinear dynamics approach," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 135-149.
    17. Anufriev, Mikhail & Chernulich, Aleksei & Tuinstra, Jan, 2018. "A laboratory experiment on the heuristic switching model," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 21-42.
    18. Park, Beum-Jo, 2014. "Time-varying, heterogeneous risk aversion and dynamics of asset prices among boundedly rational agents," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 150-159.
    19. Xue-Zhong He, 2003. "Asset Pricing, Volatility and Market Behaviour: A Market Fraction Approach," Research Paper Series 95, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.7747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.