IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.2384.html
   My bibliography  Save this paper

A Multi-factor Adaptive Statistical Arbitrage Model

Author

Listed:
  • Wenbin Zhang
  • Zhen Dai
  • Bindu Pan
  • Milan Djabirov

Abstract

This paper examines the implementation of a statistical arbitrage trading strategy based on co-integration relationships where we discover candidate portfolios using multiple factors rather than just price data. The portfolio selection methodologies include K-means clustering, graphical lasso and a combination of the two. Our results show that clustering appears to yield better candidate portfolios on average than naively using graphical lasso over the entire equity pool. A hybrid approach of using the combination of graphical lasso and clustering yields better results still. We also examine the effects of an adaptive approach during the trading period, by re-computing potential portfolios once to account for change in relationships with passage of time. However, the adaptive approach does not produce better results than the one without re-learning. Our results managed to pass the test for the presence of statistical arbitrage test at a statistically significant level. Additionally we were able to validate our findings over a separate dataset for formation and trading periods.

Suggested Citation

  • Wenbin Zhang & Zhen Dai & Bindu Pan & Milan Djabirov, 2014. "A Multi-factor Adaptive Statistical Arbitrage Model," Papers 1405.2384, arXiv.org.
  • Handle: RePEc:arx:papers:1405.2384
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.2384
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Yang & Ming-hui Wang & Nan-jing Huang, 2021. "The $$\alpha$$ α -Tail Distance with an Application to Portfolio Optimization Under Different Market Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1195-1224, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.2384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.