IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1404.7364.html
   My bibliography  Save this paper

Predictable markets? A news-driven model of the stock market

Author

Listed:
  • Maxim Gusev
  • Dimitri Kroujiline
  • Boris Govorkov
  • Sergey V. Sharov
  • Dmitry Ushanov
  • Maxim Zhilyaev

Abstract

We attempt to explain stock market dynamics in terms of the interaction among three variables: market price, investor opinion and information flow. We propose a framework for such interaction and apply it to build a model of stock market dynamics which we study both empirically and theoretically. We demonstrate that this model replicates observed market behavior on all relevant timescales (from days to years) reasonably well. Using the model, we obtain and discuss a number of results that pose implications for current market theory and offer potential practical applications.

Suggested Citation

  • Maxim Gusev & Dimitri Kroujiline & Boris Govorkov & Sergey V. Sharov & Dmitry Ushanov & Maxim Zhilyaev, 2014. "Predictable markets? A news-driven model of the stock market," Papers 1404.7364, arXiv.org, revised Sep 2014.
  • Handle: RePEc:arx:papers:1404.7364
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1404.7364
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    2. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edson Kambeu & Olipha Mpofu & Drayton Muchochoma, 2017. "Price Discovery and Volatility:A theoretical Approach," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 6(2), pages 37-43, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    2. Sandro Claudio Lera & Didier Sornette, 2015. "Currency target zone modeling: An interplay between physics and economics," Papers 1508.04754, arXiv.org, revised Oct 2015.
    3. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    4. Oldham, Matthew, 2020. "Quantifying the concerns of Dimon and Buffett with data and computation," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    5. Schmidhuber, Christof, 2021. "Trends, reversion, and critical phenomena in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    6. Kristoufek, Ladislav & Vošvrda, Miloslav S., 2016. "Herding, minority game, market clearing and efficient markets in a simple spin model framework," FinMaP-Working Papers 68, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    7. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    9. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    10. Jian Zhou & Gao-Feng Gu & Zhi-Qiang Jiang & Xiong Xiong & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2017. "Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 50(4), pages 579-594, December.
    11. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    12. Li-Xin Wang, 2016. "Modeling Stock Price Dynamics with Fuzzy Opinion Networks," Papers 1602.06213, arXiv.org.
    13. Johann Lussange & Boris Gutkin, 2023. "Order book regulatory impact on stock market quality: a multi-agent reinforcement learning perspective," Papers 2302.04184, arXiv.org.
    14. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    15. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    16. Gusev, Maxim & Kroujiline, Dimitri & Govorkov, Boris & Sharov, Sergey V. & Ushanov, Dmitry & Zhilyaev, Maxim, 2014. "Predictable markets? A news-driven model of the stock market," MPRA Paper 58831, University Library of Munich, Germany.
    17. Matthew Oldham, 2019. "Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective," Complexity, Hindawi, vol. 2019, pages 1-21, July.
    18. Schmidhuber, Christof, 2022. "Financial markets and the phase transition between water and steam," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    19. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    20. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1404.7364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.