IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1404.1441.html
   My bibliography  Save this paper

A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

Author

Listed:
  • Boualem Djehiche
  • Hamidou Tembine
  • Raul Tempone

Abstract

In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) need not to be satisfied. For a general action space a Peng's type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

Suggested Citation

  • Boualem Djehiche & Hamidou Tembine & Raul Tempone, 2014. "A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control," Papers 1404.1441, arXiv.org.
  • Handle: RePEc:arx:papers:1404.1441
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1404.1441
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boualem Djehiche & Peter Helgesson, 2015. "The Principal-Agent Problem With Time Inconsistent Utility Functions," Papers 1503.05416, arXiv.org.
    2. Boualem Djehiche & Hamidou Tembine, 2014. "Risk-Sensitive Mean-Field Type Control under Partial Observation," Papers 1411.7231, arXiv.org.
    3. Tyrone E. Duncan & Hamidou Tembine, 2018. "Linear–Quadratic Mean-Field-Type Games: A Direct Method," Games, MDPI, vol. 9(1), pages 1-18, February.
    4. Dario Bauso & Ben Mansour Dia & Boualem Djehiche & Hamidou Tembine & Raul Tempone, 2014. "Mean-Field Games for Marriage," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-15, May.
    5. Alexander Aurell, 2018. "Mean-Field Type Games between Two Players Driven by Backward Stochastic Differential Equations," Games, MDPI, vol. 9(4), pages 1-26, November.
    6. Aurell, Alexander & Djehiche, Boualem, 2019. "Modeling tagged pedestrian motion: A mean-field type game approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 168-183.
    7. Alain Bensoussan & Boualem Djehiche & Hamidou Tembine & Sheung Chi Phillip Yam, 2020. "Mean-Field-Type Games with Jump and Regime Switching," Dynamic Games and Applications, Springer, vol. 10(1), pages 19-57, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1404.1441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.