IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.5193.html
   My bibliography  Save this paper

Predicting market instability: New dynamics between volume and volatility

Author

Listed:
  • Zeyu Zheng
  • Zhi Qiao
  • Joel N. Tenenbaum
  • H. Eugene Stanley
  • Baowen Li

Abstract

Econophysics and econometrics agree that there is a correlation between volume and volatility in a time series. Using empirical data and their distributions, we further investigate this correlation and discover new ways that volatility and volume interact, particularly when the levels of both are high. We find that the distribution of the volume-conditional volatility is well fit by a power-law function with an exponential cutoff. We find that the volume-conditional volatility distribution scales with volume, and collapses these distributions to a single curve. We exploit the characteristics of the volume-volatility scatter plot to find a strong correlation between logarithmic volume and a quantity we define as local maximum volatility (LMV), which indicates the largest volatility observed in a given range of trading volumes. This finding supports our empirical analysis showing that volume is an excellent predictor of the maximum value of volatility for both same-day and near-future time periods. We also use a joint conditional probability that includes both volatility and volume to demonstrate that invoking both allows us to better predict the largest next-day volatility than invoking either one alone.

Suggested Citation

  • Zeyu Zheng & Zhi Qiao & Joel N. Tenenbaum & H. Eugene Stanley & Baowen Li, 2014. "Predicting market instability: New dynamics between volume and volatility," Papers 1403.5193, arXiv.org.
  • Handle: RePEc:arx:papers:1403.5193
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.5193
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Green & Daniel M. Heffernan, 2019. "An Agent-Based Model to Explain the Emergence of Stylised Facts in Log Returns," Papers 1901.05053, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.5193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.