IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1402.6204.html
   My bibliography  Save this paper

The role of information in a two-traders market

Author

Listed:
  • F. Bagarello
  • E. Haven

Abstract

In a very simple stock market, made by only two \emph{initially equivalent} traders, we discuss how the information can affect the performance of the traders. More in detail, we first consider how the portfolios of the traders evolve in time when the market is \emph{closed}. After that, we discuss two models in which an interaction with the outer world is allowed. We show that, in this case, the two traders behave differently, depending on \textbf{i)} the amount of information which they receive from outside; and \textbf{ii)}the quality of this information.

Suggested Citation

  • F. Bagarello & E. Haven, 2014. "The role of information in a two-traders market," Papers 1402.6204, arXiv.org.
  • Handle: RePEc:arx:papers:1402.6204
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1402.6204
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bagarello, F., 2007. "Stock markets and quantum dynamics: A second quantized description," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 283-302.
    2. Piotrowski, Edward W. & Sładkowski, Jan, 2005. "Quantum diffusion of prices and profits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 185-195.
    3. Ataullah, Ali & Davidson, Ian & Tippett, Mark, 2009. "A wave function for stock market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 455-461.
    4. Hawkins, Raymond J. & Aoki, Masanao & Roy Frieden, B., 2010. "Asymmetric information and macroeconomic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3565-3571.
    5. Fabio Bagarello, 2009. "A quantum statistical approach to simplified stock markets," Papers 0907.2531, arXiv.org.
    6. Choustova, Olga Al., 2007. "Quantum Bohmian model for financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 304-314.
    7. Bagarello, F., 2009. "A quantum statistical approach to simplified stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4397-4406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haven, Emmanuel & Khrennikova, Polina, 2018. "A quantum-probabilistic paradigm: Non-consequential reasoning and state dependence in investment choice," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 186-197.
    2. F. Bagarello & E. Haven, 2014. "Towards a formalization of a two traders market with information exchange," Papers 1412.8725, arXiv.org.
    3. Bagarello, F. & Haven, E., 2016. "First results on applying a non-linear effect formalism to alliances between political parties and buy and sell dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 403-414.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    2. Pedram, Pouria, 2012. "The minimal length uncertainty and the quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2100-2105.
    3. Ana Njegovanović, 2023. "The Importance of Quantum Information in the Stock Market and Financial Decision Making in Conditions of Radical Uncertainty," International Journal of Social Science Studies, Redfame publishing, vol. 11(1), pages 54-71, January.
    4. Ardenghi, J.S., 2021. "Quantum credit loans," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    5. Kumar, Sushil & Kumar, Sunil & Kumar, Pawan, 2020. "Diffusion entropy analysis and random matrix analysis of the Indian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    6. F. Bagarello & E. Haven, 2014. "Towards a formalization of a two traders market with information exchange," Papers 1412.8725, arXiv.org.
    7. Pineiro-Chousa, Juan & Vizcaíno-González, Marcos, 2016. "A quantum derivation of a reputational risk premium," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 304-309.
    8. Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
    9. Bagarello, F., 2011. "Damping in quantum love affairs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(15), pages 2803-2811.
    10. J. S. Ardenghi, 2023. "Modeling amortization systems with vector spaces," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(1), pages 1-12, January.
    11. Liviu-Adrian Cotfas & Camelia Delcea & Nicolae Cotfas, 2014. "Exact solution of a generalized version of the Black-Scholes equation," Papers 1411.2628, arXiv.org.
    12. Haoran Zheng & Jing Bai, 2024. "Quantum Leap: A Price Leap Mechanism in Financial Markets," Mathematics, MDPI, vol. 12(2), pages 1-27, January.
    13. Paras M. Agrawal & Ramesh Sharda, 2013. "OR Forum---Quantum Mechanics and Human Decision Making," Operations Research, INFORMS, vol. 61(1), pages 1-16, February.
    14. Xiangyi Meng & Jian-Wei Zhang & Jingjing Xu & Hong Guo, 2014. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Papers 1405.4490, arXiv.org.
    15. Khrennikova, Polina, 2016. "Application of quantum master equation for long-term prognosis of asset-prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 253-263.
    16. Jasmina Jekni'c-Dugi'c & Sonja Radi' c & Igor Petrovi'c & Momir Arsenijevi'c & Miroljub Dugi'c, 2018. "Quantum Brownian oscillator for the stock market," Papers 1901.10544, arXiv.org.
    17. Kuzu, Erkan & Süsay, Aynur & Tanrıöven, Cihan, 2022. "A model study for calculation of the temperatures of major stock markets in the world with the quantum simulation and determination of the crisis periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Raymond J. Hawkins & B. Roy Frieden, 2012. "Asymmetric Information and Quantization in Financial Economics," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-11, December.
    19. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.
    20. Pouria Pedram, 2011. "The minimal length uncertainty and the quantum model for the stock market," Papers 1111.6859, arXiv.org, revised Jan 2012.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1402.6204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.