IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1307.4821.html
   My bibliography  Save this paper

Power-law exponent of the Bouchaud-M\'ezard model on regular random network

Author

Listed:
  • Takashi Ichinomiya

Abstract

We study the Bouchaud-M\'ezard model on a regular random network. By assuming adiabaticity and independency, and utilizing the generalized central limit theorem and the Tauberian theorem, we derive an equation that determines the exponent of the probability distribution function of the wealth as $x\rightarrow \infty$. The analysis shows that the exponent can be smaller than 2, while a mean-field analysis always gives the exponent as being larger than 2. The results of our analysis are shown to be good agreement with those of the numerical simulations.

Suggested Citation

  • Takashi Ichinomiya, 2013. "Power-law exponent of the Bouchaud-M\'ezard model on regular random network," Papers 1307.4821, arXiv.org.
  • Handle: RePEc:arx:papers:1307.4821
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1307.4821
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.4821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.