IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.3923.html
   My bibliography  Save this paper

Applying the Wiener-Hopf Monte Carlo simulation technique for Levy processes to path functionals such as first passage times, undershoots and overshoots

Author

Listed:
  • Albert Ferreiro-Castilla
  • Kees van Schaik

Abstract

In this note we apply the recently established Wiener-Hopf Monte Carlo (WHMC) simulation technique for Levy processes from Kuznetsov et al. [17] to path functionals, in particular first passage times, overshoots, undershoots and the last maximum before the passage time. Such functionals have many applications, for instance in finance (the pricing of exotic options in a Levy model) and insurance (ruin time, debt at ruin and related quantities for a Levy insurance risk process). The technique works for any Levy process whose running infimum and supremum evaluated at an independent exponential time allows sampling from. This includes classic examples such as stable processes, subclasses of spectrally one sided Levy processes and large new families such as meromorphic Levy processes. Finally we present some examples. A particular aspect that is illustrated is that the WHMC simulation technique performs much better at approximating first passage times than a `plain' Monte Carlo simulation technique based on sampling increments of the Levy process.

Suggested Citation

  • Albert Ferreiro-Castilla & Kees van Schaik, 2013. "Applying the Wiener-Hopf Monte Carlo simulation technique for Levy processes to path functionals such as first passage times, undershoots and overshoots," Papers 1306.3923, arXiv.org, revised Mar 2014.
  • Handle: RePEc:arx:papers:1306.3923
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.3923
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    2. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    3. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    2. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    3. Robert Elliott & Leunglung Chan, 2004. "Perpetual American options with fractional Brownian motion," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 123-128.
    4. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    5. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    6. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    7. Neofytos Rodosthenous & Hongzhong Zhang, 2017. "Beating the Omega Clock: An Optimal Stopping Problem with Random Time-horizon under Spectrally Negative L\'evy Models," Papers 1706.03724, arXiv.org.
    8. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, July.
    9. Ludovic Mathys, 2019. "Valuing Tradeability in Exponential L\'evy Models," Papers 1912.00469, arXiv.org, revised Feb 2020.
    10. Ferreiro-Castilla, A. & Kyprianou, A.E. & Scheichl, R. & Suryanarayana, G., 2014. "Multilevel Monte Carlo simulation for Lévy processes based on the Wiener–Hopf factorisation," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 985-1010.
    11. Kleinert, Florian & van Schaik, Kees, 2015. "A variation of the Canadisation algorithm for the pricing of American options driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3234-3254.
    12. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    13. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    14. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    15. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    16. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    17. Aleksandar Mijatovi'c & Martijn Pistorius, 2009. "Exotic derivatives under stochastic volatility models with jumps," Papers 0912.2595, arXiv.org, revised Oct 2010.
    18. Jaap H. Abbring, 0000. "Mixed Hitting-Time Models," Tinbergen Institute Discussion Papers 07-057/3, Tinbergen Institute, revised 11 Aug 2009.
    19. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    20. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.3923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.