IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.2188.html
   My bibliography  Save this paper

Market-wide price co-movement around crashes in the Tokyo Stock Exchange

Author

Listed:
  • Jun-ichi Maskawa
  • Joshin Murai
  • Koji Kuroda

Abstract

As described in this paper, we study market-wide price co-movements around crashes by analyzing a dataset of high-frequency stock returns of the constituent issues of Nikkei 225 Index listed on the Tokyo Stock Exchange for the three years during 2007--2009. Results of day-to-day principal component analysis of the time series sampled at the 1 min time interval during the continuous auction of the daytime reveal the long range up to a couple of months significant auto-correlation of the maximum eigenvalue of the correlation matrix, which express the intensity of market-wide co-movement of stock prices. It also strongly correlates with the open-to-close intraday return and daily return of Nikkei 225 Index. We also study the market mode, which is the first principal component corresponding to the maximum eigenvalue, in the framework of Multi-fractal random walk model. The parameter of the model estimated in a sliding time window, which describes the covariance of the logarithm of the stochastic volatility, grows before almost all large intraday price declines of less than -5%. This phenomenon signifies the upwelling of the market-wide collective behavior before the crash, which might reflect a herding of market participants.

Suggested Citation

  • Jun-ichi Maskawa & Joshin Murai & Koji Kuroda, 2013. "Market-wide price co-movement around crashes in the Tokyo Stock Exchange," Papers 1306.2188, arXiv.org.
  • Handle: RePEc:arx:papers:1306.2188
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.2188
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armand Joulin & Augustin Lefevre & Daniel Grunberg & Jean-Philippe Bouchaud, 2008. "Stock price jumps: news and volume play a minor role," Papers 0803.1769, arXiv.org.
    2. David H. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," Working papers 487, Massachusetts Institute of Technology (MIT), Department of Economics.
    3. Dion Harmon & Marcus A. M. de Aguiar & David D. Chinellato & Dan Braha & Irving R. Epstein & Yaneer Bar-Yam, 2011. "Predicting economic market crises using measures of collective panic," Papers 1102.2620, arXiv.org.
    4. Ilhan Meric & Gulser Meric, 1997. "Co-Movements of European Equity Markets Before and After the 1987 Crash," Multinational Finance Journal, Multinational Finance Journal, vol. 1(2), pages 137-152, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Guangxi & Zhang, Minjia & Li, Qingchen, 2017. "Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among Mainland China, US, and Hong Kong stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 67-76.
    2. Jun-ichi Maskawa, 2016. "Collective Behavior of Market Participants during Abrupt Stock Price Changes," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    2. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    3. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    4. Fabrizio Lillo & Salvatore Miccich� & Michele Tumminello & Jyrki Piilo & Rosario N. Mantegna, 2015. "How news affects the trading behaviour of different categories of investors in a financial market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 213-229, February.
    5. Ryohei Hisano & Didier Sornette & Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2012. "High quality topic extraction from business news explains abnormal financial market volatility," UTokyo Price Project Working Paper Series 002, University of Tokyo, Graduate School of Economics.
    6. Ryohei Hisano & Didier Sornette & Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2012. "High quality topic extraction from business news explains abnormal financial market volatility," CARF F-Series CARF-F-299, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    8. Brown, William Jr. & Burdekin, Richard C.K. & Weidenmier, Marc D., 2006. "Volatility in an era of reduced uncertainty: Lessons from Pax Britannica," Journal of Financial Economics, Elsevier, vol. 79(3), pages 693-707, March.
    9. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    10. Cornelis A. Los, 2004. "Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data," Finance 0409033, University Library of Munich, Germany.
    11. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    12. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    13. Christoph Safferling & Aaron Lowen, 2011. "Economics in the Kingdom of Loathing: Analysis of Virtual Market Data," Working Paper Series of the Department of Economics, University of Konstanz 2011-30, Department of Economics, University of Konstanz.
    14. Roberto Rigobon & Brian Sack, 2008. "Noisy Macroeconomic Announcements, Monetary Policy, and Asset Prices," NBER Chapters, in: Asset Prices and Monetary Policy, pages 335-370, National Bureau of Economic Research, Inc.
    15. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," Post-Print hal-01277584, HAL.
    16. Adriana AnaMaria Davidescu & Eduard Mihai Manta & Razvan Gabriel Hapau & Mihaela Gruiescu & Oana Mihaela Vacaru (Boita), 2023. "Exploring the Contagion Effect from Developed to Emerging CEE Financial Markets," Mathematics, MDPI, vol. 11(3), pages 1-50, January.
    17. Laopodis, Nikiforos T., 2005. "Portfolio diversification benefits within Europe: Implications for a US investor," International Review of Financial Analysis, Elsevier, vol. 14(4), pages 455-476.
    18. Mohd Fahmi Ghazali & Hooi Hooi Lean & Zakaria Bahari, 2019. "Does Gold Investment Offer Protection Against Stock Market Losses? Evidence From Five Countries," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 65(02), pages 275-301, August.
    19. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    20. Jean-Philippe Bouchaud & Damien Challet, 2016. "Why have asset price properties changed so little in 200 years," Papers 1605.00634, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.2188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.