IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1304.3159.html
   My bibliography  Save this paper

Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials

Author

Listed:
  • Andrey Itkin

Abstract

We propose a new, unified approach to solving jump-diffusion partial integro-differential equations (PIDEs) that often appear in mathematical finance. Our method consists of the following steps. First, a second-order operator splitting on financial processes (diffusion and jumps) is applied to these PIDEs. To solve the diffusion equation, we use standard finite-difference methods, which for multi-dimensional problems could also include splitting on various dimensions. For the jump part, we transform the jump integral into a pseudo-differential operator. Then for various jump models we show how to construct an appropriate first and second order approximation on a grid which supersets the grid that we used for the diffusion part. These approximations make the scheme to be unconditionally stable in time and preserve positivity of the solution which is computed either via a matrix exponential, or via P{\'a}de approximation of the matrix exponent. Various numerical experiments are provided to justify these results.

Suggested Citation

  • Andrey Itkin, 2013. "Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials," Papers 1304.3159, arXiv.org, revised Apr 2014.
  • Handle: RePEc:arx:papers:1304.3159
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1304.3159
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kathrin Glau, 2015. "Feynman-Kac formula for L\'evy processes with discontinuous killing rate," Papers 1502.07531, arXiv.org, revised Nov 2015.
    2. Itkin, Andrey, 2014. "Splitting and matrix exponential approach for jump-diffusion models with Inverse Normal Gaussian, Hyperbolic and Meixner jumps," Algorithmic Finance, IOS Press, vol. 3(3-4), pages 233-250.
    3. Andrey Itkin, 2017. "Modelling stochastic skew of FX options using SLV models with stochastic spot/vol correlation and correlated jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(6), pages 485-519, November.
    4. Andrey Itkin & Alexander Lipton, 2014. "Efficient solution of structural default models with correlated jumps and mutual obligations," Papers 1408.6513, arXiv.org, revised Nov 2014.
    5. Maximilian Ga{ss} & Kathrin Glau, 2016. "A Flexible Galerkin Scheme for Option Pricing in L\'evy Models," Papers 1603.08216, arXiv.org.
    6. Andrey Itkin, 2015. "HIGH ORDER SPLITTING METHODS FOR FORWARD PDEs AND PIDEs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-24.
    7. Kathrin Glau, 2016. "A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates," Finance and Stochastics, Springer, vol. 20(4), pages 1021-1059, October.
    8. Andrey Itkin & Alexander Lipton, 2017. "Structural default model with mutual obligations," Review of Derivatives Research, Springer, vol. 20(1), pages 15-46, April.
    9. Andrey Itkin, 2015. "LSV models with stochastic interest rates and correlated jumps," Papers 1511.01460, arXiv.org, revised Nov 2016.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1304.3159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.