IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1304.1420.html
   My bibliography  Save this paper

Fluctuation Analysis for the Loss From Default

Author

Listed:
  • Konstantinos Spiliopoulos
  • Justin A. Sirignano
  • Kay Giesecke

Abstract

We analyze the fluctuation of the loss from default around its large portfolio limit in a class of reduced-form models of correlated firm-by-firm default timing. We prove a weak convergence result for the fluctuation process and use it for developing a conditionally Gaussian approximation to the loss distribution. Numerical results illustrate the accuracy and computational efficiency of the approximation.

Suggested Citation

  • Konstantinos Spiliopoulos & Justin A. Sirignano & Kay Giesecke, 2013. "Fluctuation Analysis for the Loss From Default," Papers 1304.1420, arXiv.org, revised Feb 2015.
  • Handle: RePEc:arx:papers:1304.1420
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1304.1420
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Weber & Kay Giesecke, 2003. "Credit Contagion and Aggregate Losses," Computing in Economics and Finance 2003 246, Society for Computational Economics.
    2. Dai Pra, Paolo & Tolotti, Marco, 2009. "Heterogeneous credit portfolios and the dynamics of the aggregate losses," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2913-2944, September.
    3. Paolo Dai Pra & Wolfgang J. Runggaldier & Elena Sartori & Marco Tolotti, 2007. "Large portfolio losses: A dynamic contagion model," Papers 0704.1348, arXiv.org, revised Mar 2009.
    4. Kim, Kyeong-Hun, 2009. "Sobolev space theory of SPDEs with continuous or measurable leading coefficients," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 16-44, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Spiliopoulos & Richard B. Sowers, 2013. "Default Clustering in Large Pools: Large Deviations," Papers 1311.0498, arXiv.org, revised Feb 2015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers & Justin A. Sirignano, 2011. "Large Portfolio Asymptotics for Loss From Default," Papers 1109.1272, arXiv.org, revised Feb 2015.
    2. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    3. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    4. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    5. Amogh Deshpande, 2014. "Comparing the Value at Risk Performance of the CreditRisk + and its Enhancement: A Large Deviations Approach," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 1009-1023, December.
    6. Konstantinos Spiliopoulos, 2014. "Systemic Risk and Default Clustering for Large Financial Systems," Papers 1402.5352, arXiv.org, revised Feb 2015.
    7. Xiaowei Zhang & Jose Blanchet & Kay Giesecke & Peter W. Glynn, 2015. "Affine Point Processes: Approximation and Efficient Simulation," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 797-819, October.
    8. Ben Hambly & Nikolaos Kolliopoulos, 2020. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Finance and Stochastics, Springer, vol. 24(3), pages 757-794, July.
    9. Dai Pra, Paolo & Tolotti, Marco, 2009. "Heterogeneous credit portfolios and the dynamics of the aggregate losses," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2913-2944, September.
    10. Sirignano, Justin & Spiliopoulos, Konstantinos, 2020. "Mean field analysis of neural networks: A central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1820-1852.
    11. Konstantinos Spiliopoulos & Richard B. Sowers, 2013. "Default Clustering in Large Pools: Large Deviations," Papers 1311.0498, arXiv.org, revised Feb 2015.
    12. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    13. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Risk Assessment for Banking Systems," Management Science, INFORMS, vol. 52(9), pages 1301-1314, September.
    14. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Networks, Shocks, and Systemic Risk," NBER Working Papers 20931, National Bureau of Economic Research, Inc.
    15. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    16. Ogura, Yoshiaki & Okui, Ryo & Saito, Yukiko Umeno, 2015. "Network-Motivated Lending Decisions," HIT-REFINED Working Paper Series 29, Institute of Economic Research, Hitotsubashi University.
    17. Cumhur ÞAHÝN & Hüseyin ALTAY, 2016. "Examination of the Relationship between Turkey’s Credit Default Swap (CDS) Points and Unemployment," Eurasian Business & Economics Journal, Eurasian Academy Of Sciences, vol. 4(4), pages 52-67, January.
    18. Jin-Chuan Duan & Weimin Miao, 2016. "Default Correlations and Large-Portfolio Credit Analysis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 536-546, October.
    19. Steven N. Evans & Alexandru Hening, 2010. "Non-existence of Markovian time dynamics for graphical models of correlated default," Papers 1008.2226, arXiv.org.
    20. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1304.1420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.