IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1303.0073.html
   My bibliography  Save this paper

A Method for Comparing Hedge Funds

Author

Listed:
  • Uri Kartoun

Abstract

The paper presents new machine learning methods: signal composition, which classifies time-series regardless of length, type, and quantity; and self-labeling, a supervised-learning enhancement. The paper describes further the implementation of the methods on a financial search engine system to identify behavioral similarities among time-series representing monthly returns of 11,312 hedge funds operated during approximately one decade (2000 - 2010). The presented approach of cross-category and cross-location classification assists the investor to identify alternative investments.

Suggested Citation

  • Uri Kartoun, 2013. "A Method for Comparing Hedge Funds," Papers 1303.0073, arXiv.org, revised Mar 2013.
  • Handle: RePEc:arx:papers:1303.0073
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1303.0073
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nandita Das, 2003. "Hedge Fund Classification using K-means Clustering Method," Computing in Economics and Finance 2003 284, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerinsh Jeyapaulraj & Dhruv Desai & Peter Chu & Dhagash Mehta & Stefano Pasquali & Philip Sommer, 2022. "Supervised similarity learning for corporate bonds using Random Forest proximities," Papers 2207.04368, arXiv.org, revised Oct 2022.
    2. Harald Oberhofer & Marian Schwinner, 2017. "Do Individual Salaries Depend On the Performance of the Peers? Prototype Heuristic and Wage Bargaining in the NBA," WIFO Working Papers 534, WIFO.
    3. Yang, Ying & Campana, Pietro Elia & Yan, Jinyue, 2020. "Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Dhagash Mehta & Dhruv Desai & Jithin Pradeep, 2020. "Machine Learning Fund Categorizations," Papers 2006.00123, arXiv.org.
    5. Darolles, Serge & Gourieroux, Christian, 2010. "Conditionally fitted Sharpe performance with an application to hedge fund rating," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 578-593, March.
    6. Wenpin Tang & Xiao Xu & Xun Yu Zhou, 2021. "Asset Selection via Correlation Blockmodel Clustering," Papers 2103.14506, arXiv.org, revised Aug 2021.
    7. Joe Kainja, 2018. "Using Risk Characteristics to Classify Funds," Applied Finance and Accounting, Redfame publishing, vol. 4(2), pages 31-44, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1303.0073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.