IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1301.6485.html
   My bibliography  Save this paper

Mathematical Formulation of an Optimal Execution Problem with Uncertain Market Impact

Author

Listed:
  • Kensuke Ishitani
  • Takashi Kato

Abstract

We study an optimal execution problem with uncertain market impact to derive a more realistic market model. We construct a discrete-time model as a value function for optimal execution. Market impact is formulated as the product of a deterministic part increasing with execution volume and a positive stochastic noise part. Then, we derive a continuous-time model as a limit of a discrete-time value function. We find that the continuous-time value function is characterized by a stochastic control problem with a Levy process.

Suggested Citation

  • Kensuke Ishitani & Takashi Kato, 2013. "Mathematical Formulation of an Optimal Execution Problem with Uncertain Market Impact," Papers 1301.6485, arXiv.org, revised Jun 2015.
  • Handle: RePEc:arx:papers:1301.6485
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1301.6485
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    2. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    3. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    4. Ajay Subramanian & Robert A. Jarrow, 2001. "The Liquidity Discount," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 447-474, October.
    5. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takashi Kato, 2017. "An Optimal Execution Problem with S-shaped Market Impact Functions," Papers 1706.09224, arXiv.org, revised Oct 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takashi Kato, 2011. "An Optimal Execution Problem with a Geometric Ornstein-Uhlenbeck Price Process," Papers 1107.1787, arXiv.org, revised Jul 2014.
    2. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    3. Aur'elien Alfonsi & Alexander Schied & Florian Klock, 2013. "Multivariate transient price impact and matrix-valued positive definite functions," Papers 1310.4471, arXiv.org, revised Sep 2015.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    5. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    6. Seungki Min & Costis Maglaras & Ciamac C. Moallemi, 2018. "Cross-Sectional Variation of Intraday Liquidity, Cross-Impact, and their Effect on Portfolio Execution," Papers 1811.05524, arXiv.org.
    7. Hyoeun Lee & Kiseop Lee, 2020. "Optimal execution with liquidity risk in a diffusive order book market," Papers 2004.10951, arXiv.org.
    8. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    9. Michele Vodret & Bence Tóth & Iacopo Mastromatteo & Michael Benzaquen, 2022. "Do fundamentals shape the price response? A critical assessment of linear impact models," Post-Print hal-03797375, HAL.
    10. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    11. Alexander Schied & Tao Zhang, 2013. "A market impact game under transient price impact," Papers 1305.4013, arXiv.org, revised May 2017.
    12. Aur'elien Alfonsi & Jos'e Infante Acevedo, 2012. "Optimal execution and price manipulations in time-varying limit order books," Papers 1204.2736, arXiv.org.
    13. Ibrahim Ekren & Johannes Muhle-Karbe, 2017. "Portfolio Choice with Small Temporary and Transient Price Impact," Papers 1705.00672, arXiv.org, revised Apr 2020.
    14. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    15. Aur'elien Alfonsi & Pierre Blanc, 2015. "Extension and calibration of a Hawkes-based optimal execution model," Papers 1506.08740, arXiv.org.
    16. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    17. Nikolay A. Andreev, 2015. "Worst-Case Approach To Strategic Optimal Portfolio Selection Under Transaction Costs And Trading Limits," HSE Working papers WP BRP 45/FE/2015, National Research University Higher School of Economics.
    18. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A Mean Field Game of Portfolio Trading and Its Consequences On Perceived Correlations," Papers 1902.09606, arXiv.org.
    19. Ludovic Moreau & Johannes Muhle-Karbe & H. Mete Soner, 2014. "Trading with Small Price Impact," Papers 1402.5304, arXiv.org, revised Mar 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.6485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.