IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1301.0280.html
   My bibliography  Save this paper

Utility maximization with current utility on the wealth: regularity of solutions to the HJB equation

Author

Listed:
  • Salvatore Federico
  • Paul Gassiat
  • Fausto Gozzi

Abstract

We consider a utility maximization problem for an investment-consumption portfolio when the current utility depends also on the wealth process. Such kind of problems arise, e.g., in portfolio optimization with random horizon or with random trading times. To overcome the difficulties of the problem we use the dual approach. We define a dual problem and treat it by means of dynamic programming, showing that the viscosity solutions of the associated Hamilton-Jacobi-Bellman equation belong to a suitable class of smooth functions. This allows to define a smooth solution of the primal Hamilton-Jacobi-Bellman equation, proving that this solution is indeed unique in a suitable class and coincides with the value function of the primal problem. Some financial applications of the results are provided.

Suggested Citation

  • Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2013. "Utility maximization with current utility on the wealth: regularity of solutions to the HJB equation," Papers 1301.0280, arXiv.org, revised Feb 2015.
  • Handle: RePEc:arx:papers:1301.0280
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1301.0280
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Jeanblanc, Monique & Martellini, Lionel, 2008. "Optimal investment decisions when time-horizon is uncertain," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1100-1113, December.
    2. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    3. Salvatore Federico, 2011. "A stochastic control problem with delay arising in a pension fund model," Finance and Stochastics, Springer, vol. 15(3), pages 421-459, September.
    4. Salvatore Federico & Paul Gassiat, 2014. "Viscosity Characterization of the Value Function of an Investment-Consumption Problem in Presence of an Illiquid Asset," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 966-991, March.
    5. Baojun Bian & Harry Zheng, 2012. "Smooth Value Function with Applications in Wealth-CVaR Efficient Portfolio and Turnpike Property," Papers 1212.3137, arXiv.org.
    6. repec:dau:papers:123456789/1803 is not listed on IDEAS
    7. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi & Elena Vigna, 2010. "Constrained portfolio choices in the decumulation phase of a pension plan," Carlo Alberto Notebooks 155, Collegio Carlo Alberto.
    8. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    9. R. J. Elliott & M. Jeanblanc & M. Yor, 2000. "On Models of Default Risk," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 179-195, April.
    10. Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2017. "Impact Of Time Illiquidity In A Mixed Market Without Full Observation," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 401-437, April.
    11. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    12. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    13. Bruno Bouchard & Huyên Pham, 2004. "Wealth-path dependent utility maximization in incomplete markets," Finance and Stochastics, Springer, vol. 8(4), pages 579-603, November.
    14. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kexin Chen & Hoi Ying Wong, 2024. "Duality in optimal consumption–investment problems with alternative data," Finance and Stochastics, Springer, vol. 28(3), pages 709-758, July.
    2. Alain Bensoussan & Ka Chun Cheung & Yiqun Li & Sheung Chi Phillip Yam, 2022. "Inter‐temporal mutual‐fund management," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 825-877, July.
    3. Salvatore Federico & Paul Gassiat, 2014. "Viscosity Characterization of the Value Function of an Investment-Consumption Problem in Presence of an Illiquid Asset," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 966-991, March.
    4. Kexin Chen & Hoi Ying Wong, 2022. "Duality in optimal consumption--investment problems with alternative data," Papers 2210.08422, arXiv.org, revised Jul 2023.
    5. Daniel Sevcovic & Cyril Izuchukwu Udeani, 2021. "Application of maximal monotone operator method for solving Hamilton-Jacobi-Bellman equation arising from optimal portfolio selection problem," Papers 2104.06115, arXiv.org.
    6. Ashley Davey & Michael Monoyios & Harry Zheng, 2021. "Duality for optimal consumption with randomly terminating income," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1275-1314, October.
    7. Michael Monoyios, 2020. "Infinite horizon utility maximisation from inter-temporal wealth," Papers 2009.00972, arXiv.org, revised Oct 2020.
    8. Agostino Capponi & Lijun Bo, 2016. "Robust Optimization of Credit Portfolios," Papers 1603.08169, arXiv.org.
    9. Filippo de Feo & Salvatore Federico & Andrzej 'Swik{e}ch, 2023. "Optimal control of stochastic delay differential equations and applications to path-dependent financial and economic models," Papers 2302.08809, arXiv.org.
    10. Dadashi, Hassan, 2020. "Optimal investment–consumption problem: Post-retirement with minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 160-181.
    11. Lijun Bo & Agostino Capponi, 2017. "Robust Optimization of Credit Portfolios," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 30-56, January.
    12. Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    2. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    3. Alessandra Milazzo & Elena Vigna, 2018. "The Italian Pension Gap: a Stochastic Optimal Control Approach," Carlo Alberto Notebooks 553, Collegio Carlo Alberto.
    4. Alessandro Milazzo & Elena Vigna, 2018. "The Italian Pension Gap: A Stochastic Optimal Control Approach," Risks, MDPI, vol. 6(2), pages 1-20, April.
    5. Ayşegül İşcanog̃lu-Çekiç, 2016. "An Optimal Turkish Private Pension Plan with a Guarantee Feature," Risks, MDPI, vol. 4(3), pages 1-12, June.
    6. Oleksii Mostovyi, 2015. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Finance and Stochastics, Springer, vol. 19(1), pages 135-159, January.
    7. Wei-Ting Pan, 2016. "The Impact of Mandatory Savings on Life Cycle Consumption and Portfolio Choice," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 32, July-Dece.
    8. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," CeRP Working Papers 89, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    9. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," Carlo Alberto Notebooks 108, Collegio Carlo Alberto, revised 2009.
    10. Alessandro Milazzo & Elena Vigna, 2018. "“The Italian Pension Gap: a Stochastic Optimal Control Approach"," CeRP Working Papers 179, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    11. Alessandro Milazzo & Elena Vigna, 2018. "The Italian Pension Gap: a Stochastic Optimal Control Approach," Papers 1804.05354, arXiv.org.
    12. Dadashi, Hassan, 2020. "Optimal investment–consumption problem: Post-retirement with minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 160-181.
    13. Hassan Dadashi, 2018. "Optimal investment-consumption problem: post-retirement with minimum guarantee," Papers 1803.00611, arXiv.org, revised Aug 2020.
    14. Wei-Ting Pan, 2016. "The Impact of Mandatory Savings on Life Cycle Consumption and Portfolio Choice," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2016, January-A.
    15. Di Tella, Paolo, 2020. "On the weak representation property in progressively enlarged filtrations with an application in exponential utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 760-784.
    16. Lijun Bo & Huafu Liao & Xiang Yu, 2020. "Optimal Tracking Portfolio with A Ratcheting Capital Benchmark," Papers 2006.13661, arXiv.org, revised Apr 2021.
    17. Constantinos Kardaras & Jan Obłój & Eckhard Platen, 2017. "The Numéraire Property And Long-Term Growth Optimality For Drawdown-Constrained Investments," Mathematical Finance, Wiley Blackwell, vol. 27(1), pages 68-95, January.
    18. Md. Azizul Baten & Anton Abdulbasah Kamil, 2013. "Optimal Consumption in a Stochastic Ramsey Model with Cobb-Douglas Production Function," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2013, pages 1-8, March.
    19. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    20. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.0280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.