IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1212.3195.html
   My bibliography  Save this paper

Non stationary multifractality in stock returns

Author

Listed:
  • Raffaello Morales
  • T. Di Matteo
  • Tomaso Aste

Abstract

We perform an extensive empirical analysis of scaling properties of equity returns, suggesting that financial data show time varying multifractal properties. This is obtained by comparing empirical observations of the weighted generalised Hurst exponent (wGHE) with time series simulated via Multifractal Random Walk (MRW) by Bacry \textit{et al.} [\textit{E.Bacry, J.Delour and J.Muzy, Phys.Rev.E \,{\bf 64} 026103, 2001}]. While dynamical wGHE computed on synthetic MRW series is consistent with a scenario where multifractality is constant over time, fluctuations in the dynamical wGHE observed in empirical data are not in agreement with a MRW with constant intermittency parameter. We test these hypotheses of constant multifractality considering different specifications of MRW model with fatter tails: in all cases considered, although the thickness of the tails accounts for most of anomalous fluctuations of multifractality, still cannot fully explain the observed fluctuations.

Suggested Citation

  • Raffaello Morales & T. Di Matteo & Tomaso Aste, 2012. "Non stationary multifractality in stock returns," Papers 1212.3195, arXiv.org, revised May 2013.
  • Handle: RePEc:arx:papers:1212.3195
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1212.3195
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    3. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    4. David, S.A. & Inácio, C.M.C. & Quintino, D.D. & Machado, J.A.T., 2020. "Measuring the Brazilian ethanol and gasoline market efficiency using DFA-Hurst and fractal dimension," Energy Economics, Elsevier, vol. 85(C).
    5. Pagnottoni, Paolo & Spelta, Alessandro & Pecora, Nicolò & Flori, Andrea & Pammolli, Fabio, 2021. "Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    6. Axel A. Araneda & Nils Bertschinger, 2020. "The sub-fractional CEV model," Papers 2001.06412, arXiv.org, revised Mar 2021.
    7. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    8. Douglas Castilho & Tharsis T. P. Souza & Soong Moon Kang & Jo~ao Gama & Andr'e C. P. L. F. de Carvalho, 2021. "Forecasting Financial Market Structure from Network Features using Machine Learning," Papers 2110.11751, arXiv.org.
    9. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    10. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    11. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    12. Leopoldo S'anchez-Cant'u & Carlos Arturo Soto-Campos & Andriy Kryvko, 2016. "Evidence of Self-Organization in Time Series of Capital Markets," Papers 1604.03996, arXiv.org, revised Mar 2017.
    13. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    14. Saâdaoui, Foued, 2023. "Skewed multifractal scaling of stock markets during the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    15. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    16. Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
    17. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    18. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    19. Pagnottoni, Paolo & Spelta, Alessandro & Flori, Andrea & Pammolli, Fabio, 2022. "Climate change and financial stability: Natural disaster impacts on global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    20. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.3195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.