IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1210.1848.html
   My bibliography  Save this paper

On random convex analysis -- the analytic foundation of the module approach to conditional risk measures

Author

Listed:
  • Tiexin Guo
  • Shien Zhao
  • Xiaolin Zeng

Abstract

To provide a solid analytic foundation for the module approach to conditional risk measures, this paper establishes a complete random convex analysis over random locally convex modules by simultaneously considering the two kinds of topologies (namely the $(\varepsilon,\lambda)$--topology and the locally $L^0$-- convex topology). Then, we make use of the advantage of the $(\varepsilon,\lambda)$--topology and grasp the local property of $L^0$--convex conditional risk measures to prove that every $L^{0}$--convex $L^{p}$--conditional risk measure ($1\leq p\leq+\infty$) can be uniquely extended to an $L^{0}$--convex $L^{p}_{\mathcal{F}}(\mathcal{E})$--conditional risk measure and that the dual representation theorem of the former can also be regarded as a special case of that of the latter, which shows that the study of $L^p$--conditional risk measures can be incorporated into that of $L^{p}_{\mathcal{F}}(\mathcal{E})$--conditional risk measures. In particular, in the process we find that combining the countable concatenation hull of a set and the local property of conditional risk measures is a very useful analytic skill that may considerably simplify and improve the study of $L^{0}$--convex conditional risk measures.

Suggested Citation

  • Tiexin Guo & Shien Zhao & Xiaolin Zeng, 2012. "On random convex analysis -- the analytic foundation of the module approach to conditional risk measures," Papers 1210.1848, arXiv.org, revised Mar 2013.
  • Handle: RePEc:arx:papers:1210.1848
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1210.1848
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiexin Guo, 2010. "Recent progress in random metric theory and its applications to conditional risk measures," Papers 1006.0697, arXiv.org, revised Mar 2011.
    2. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    4. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    2. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    3. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    4. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2022. "Convexity and sublinearity of g-expectations," Statistics & Probability Letters, Elsevier, vol. 189(C).
    5. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    6. Alessandro Calvia & Emanuela Rosazza Gianin, 2019. "Risk measures and progressive enlargement of filtration: a BSDE approach," Papers 1904.13257, arXiv.org, revised Mar 2020.
    7. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    8. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    9. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    10. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    11. Andrzej Ruszczynski & Jianing Yao, 2017. "A Dual Method For Backward Stochastic Differential Equations with Application to Risk Valuation," Papers 1701.06234, arXiv.org, revised Aug 2020.
    12. Zachary Feinstein & Birgit Rudloff, 2012. "Time consistency of dynamic risk measures in markets with transaction costs," Papers 1201.1483, arXiv.org, revised Dec 2012.
    13. Alessandro Doldi & Marco Frittelli, 2020. "Conditional Systemic Risk Measures," Papers 2010.11515, arXiv.org, revised May 2021.
    14. Dejian Tian & Xunlian Wang, 2023. "Dynamic star-shaped risk measures and $g$-expectations," Papers 2305.02481, arXiv.org.
    15. Masaaki Fukasawa & Mitja Stadje, 2018. "Perfect hedging under endogenous permanent market impacts," Finance and Stochastics, Springer, vol. 22(2), pages 417-442, April.
    16. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    17. Frittelli Marco & Maggis Marco, 2014. "Complete duality for quasiconvex dynamic risk measures on modules of the Lp-type," Statistics & Risk Modeling, De Gruyter, vol. 31(1), pages 103-128, March.
    18. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    19. Ma, Hanmin & Tian, Dejian, 2021. "Generalized entropic risk measures and related BSDEs," Statistics & Probability Letters, Elsevier, vol. 174(C).
    20. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.1848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.