IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1207.4300.html
   My bibliography  Save this paper

A higher order correlation unscented Kalman filter

Author

Listed:
  • Oliver Grothe

Abstract

Many nonlinear extensions of the Kalman filter, e.g., the extended and the unscented Kalman filter, reduce the state densities to Gaussian densities. This approximation gives sufficient results in many cases. However, this filters only estimate states that are correlated with the observation. Therefore, sequential estimation of diffusion parameters, e.g., volatility, which are not correlated with the observations is not possible. While other filters overcome this problem with simulations, we extend the measurement update of the Gaussian two-moment filters by a higher order correlation measurement update. We explicitly state formulas for a higher order unscented Kalman filter within a continuous-discrete state space. We demonstrate the filter in the context of parameter estimation of an Ornstein-Uhlenbeck process.

Suggested Citation

  • Oliver Grothe, 2012. "A higher order correlation unscented Kalman filter," Papers 1207.4300, arXiv.org.
  • Handle: RePEc:arx:papers:1207.4300
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1207.4300
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    3. Crowder, Martin, 1986. "On Consistency and Inconsistency of Estimating Equations," Econometric Theory, Cambridge University Press, vol. 2(3), pages 305-330, December.
    4. Heyde, C. C., 1987. "On combining quasi-likelihood estimating functions," Stochastic Processes and their Applications, Elsevier, vol. 25, pages 281-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    3. Zhiwu Chen & Gurdip Bakshi, 2001. "Stock Valuation in Dynamic Economics," Yale School of Management Working Papers ysm198, Yale School of Management.
    4. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    5. Philippe Raimbourg & Paul Zimmermann, 2022. "Is normal backwardation normal? Valuing financial futures with a local index-rate covariance," Post-Print hal-04011013, HAL.
    6. Andrey Itkin & Dmitry Muravey, 2023. "American options in time-dependent one-factor models: Semi-analytic pricing, numerical methods and ML support," Papers 2307.13870, arXiv.org.
    7. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    8. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, July.
    9. Gonzalo Cortazar & Eduardo S. Schwartz & Lorenzo F. Naranjo, 2007. "Term-structure estimation in markets with infrequent trading," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(4), pages 353-369.
    10. Bakshi, Gurdip & Chen, Zhiwu, 2005. "Stock valuation in dynamic economies," Journal of Financial Markets, Elsevier, vol. 8(2), pages 111-151, May.
    11. Bouasker, O. & Letifi, N. & Prigent, J.-L., 2016. "Optimal funding and hiring/firing policies with mean reverting demand," Economic Modelling, Elsevier, vol. 58(C), pages 569-579.
    12. Cortazar, Gonzalo & Schwartz, Eduardo S. & Naranjo, Lorezo, 2003. "Term Structure Estimation in Low-Frequency Transaction Markets: A Kalman Filter Approach with Incomplete Panel-Data," University of California at Los Angeles, Anderson Graduate School of Management qt56h775cz, Anderson Graduate School of Management, UCLA.
    13. Christian Hafner, 2003. "Simple approximations for option pricing under mean reversion and stochastic volatility," Computational Statistics, Springer, vol. 18(3), pages 339-353, September.
    14. Bali, Turan G., 2003. "Modeling the stochastic behavior of short-term interest rates: Pricing implications for discount bonds," Journal of Banking & Finance, Elsevier, vol. 27(2), pages 201-228, February.
    15. Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
    16. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    17. Benjamin Tin Chun Cheng, 2017. "Pricing and Hedging of Long-Dated Commodity Derivatives," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2017, January-A.
    18. Glover, Kristoffer J. & Hambusch, Gerhard, 2016. "Leveraged investments and agency conflicts when cash flows are mean reverting," Journal of Economic Dynamics and Control, Elsevier, vol. 67(C), pages 1-21.
    19. Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.
    20. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1207.4300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.