IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1206.4420.html
   My bibliography  Save this paper

Statistical pairwise interaction model of stock market

Author

Listed:
  • Thomas Bury

Abstract

Financial markets are a classical example of complex systems as they comprise many interacting stocks. As such, we can obtain a surprisingly good description of their structure by making the rough simplification of binary daily returns. Spin glass models have been applied and gave some valuable results but at the price of restrictive assumptions on the market dynamics or others are agent-based models with rules designed in order to recover some empirical behaviours. Here we show that the pairwise model is actually a statistically consistent model with observed first and second moments of the stocks orientation without making such restrictive assumptions. This is done with an approach based only on empirical data of price returns. Our data analysis of six major indices suggests that the actual interaction structure may be thought as an Ising model on a complex network with interaction strengths scaling as the inverse of the system size. This has potentially important implications since many properties of such a model are already known and some techniques of the spin glass theory can be straightforwardly applied. Typical behaviours, as multiple equilibria or metastable states, different characteristic time scales, spatial patterns, order-disorder, could find an explanation in this picture.

Suggested Citation

  • Thomas Bury, 2012. "Statistical pairwise interaction model of stock market," Papers 1206.4420, arXiv.org, revised Jan 2014.
  • Handle: RePEc:arx:papers:1206.4420
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1206.4420
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Laloux & Pierre Cizeau & Jean-Philippe Bouchaud & Marc Potters, 1998. "Noise dressing of financial correlation matrices," Science & Finance (CFM) working paper archive 500051, Science & Finance, Capital Fund Management.
    2. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 235-260.
    3. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    4. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    5. Aoki,Masanao, 1998. "New Approaches to Macroeconomic Modeling," Cambridge Books, Cambridge University Press, number 9780521637695.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongli Zeng & R'emi Lemoy & Mikko Alava, 2013. "Financial interaction networks inferred from traded volumes," Papers 1311.3871, arXiv.org.
    2. Thomas Bury, 2013. "A statistical physics perspective on criticality in financial markets," Papers 1310.2446, arXiv.org, revised Jan 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bury, Thomas, 2013. "Market structure explained by pairwise interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1375-1385.
    2. Alfarano Simone & Milakovic Mishael, 2012. "Identification of Interaction Effects in Survey Expectations: A Cautionary Note," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(4), pages 1-23, October.
    3. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    4. Catalano, Michele & Di Guilmi, Corrado, 2019. "Uncertainty, rationality and complexity in a multi-sectoral dynamic model: The dynamic stochastic generalized aggregation approach," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 117-144.
    5. Imre Kondor & István Csabai & Gábor Papp & Enys Mones & Gábor Czimbalmos & Máté Sándor, 2014. "Strong random correlations in networks of heterogeneous agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(2), pages 203-232, October.
    6. Naylor, Michael J. & Rose, Lawrence C. & Moyle, Brendan J., 2007. "Topology of foreign exchange markets using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 199-208.
    7. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2012. "The Japanese economy in crises: A time series segmentation study," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-81.
    8. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    9. Federico Guglielmo Morelli & Michael Benzaquen & Marco Tarzia & Jean-Philippe Bouchaud, 2020. "Confidence collapse in a multihousehold, self-reflexive DSGE model," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(17), pages 9244-9249, April.
    10. H Peyton Young, 2014. "The Evolution of Social Norms," Economics Series Working Papers 726, University of Oxford, Department of Economics.
    11. Chavez, Daniel E. & Palma, Marco A. & Nayga, Rodolfo M. & Mjelde, James W., 2020. "Product availability in discrete choice experiments with private goods," Journal of choice modelling, Elsevier, vol. 36(C).
    12. Keith Head & Thierry Mayer, 2008. "Detection Of Local Interactions From The Spatial Pattern Of Names In France," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 67-95, February.
    13. Steven N. Durlauf & Yannis M. Ioannides, 2010. "Social Interactions," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 451-478, September.
    14. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    15. Karla Hoff & Arijit Sen, 2005. "Homeownership, Community Interactions, and Segregation," American Economic Review, American Economic Association, vol. 95(4), pages 1167-1189, September.
    16. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    17. Atallah, Shadi S. & Huang, Ju-Chin & Leahy, Jessica & Bennett, Karen, 2020. "Preference Heterogeneity and Neighborhood Effect in Invasive Species Control: The Case of Glossy Buckthorn in New Hampshire and Maine Forests," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304623, Agricultural and Applied Economics Association.
    18. B. Jahanshahi, 2014. "Separating Gender Composition Effect from Peer Effects in Education," Working Papers wp932, Dipartimento Scienze Economiche, Universita' di Bologna.
    19. Steven N. Durlauf, 1996. "Statistical Mechanics Approaches to Socioeconomic Behavior," NBER Technical Working Papers 0203, National Bureau of Economic Research, Inc.
    20. D'Arcangelis, Anna Maria & Rotundo, Giulia, 2021. "Herding in mutual funds: A complex network approach," Journal of Business Research, Elsevier, vol. 129(C), pages 679-686.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.4420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.