IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1205.4008.html
   My bibliography  Save this paper

Price manipulation in a market impact model with dark pool

Author

Listed:
  • Florian Klock
  • Alexander Schied
  • Yuemeng Sun

Abstract

For a market impact model, price manipulation and related notions play a role that is similar to the role of arbitrage in a derivatives pricing model. Here, we give a systematic investigation into such regularity issues when orders can be executed both at a traditional exchange and in a dark pool. To this end, we focus on a class of dark-pool models whose market impact at the exchange is described by an Almgren--Chriss model. Conditions for the absence of price manipulation for all Almgren--Chriss models include the absence of temporary cross-venue impact, the presence of full permanent cross-venue impact, and the additional penalization of orders executed in the dark pool. When a particular Almgren--Chriss model has been fixed, we show by a number of examples that the regularity of the dark-pool model hinges in a subtle way on the interplay of all model parameters and on the liquidation time constraint. The paper can also be seen as a case study for the regularity of market impact models in general.

Suggested Citation

  • Florian Klock & Alexander Schied & Yuemeng Sun, 2012. "Price manipulation in a market impact model with dark pool," Papers 1205.4008, arXiv.org, revised May 2014.
  • Handle: RePEc:arx:papers:1205.4008
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1205.4008
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:hal:wpaper:hal-00422427 is not listed on IDEAS
    2. Alfonsi Aurélien & Alexander Schied & Alla Slynko, 2012. "Order Book Resilience, Price Manipulation, and the Positive Portfolio Problem," Post-Print hal-00941333, HAL.
    3. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    4. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    5. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    6. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    7. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    8. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag`es, 2009. "Optimal split of orders across liquidity pools: a stochastic algorithm approach," Papers 0910.1166, arXiv.org, revised May 2010.
    9. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    10. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graewe, Paulwin & Horst, Ulrich & Séré, Eric, 2018. "Smooth solutions to portfolio liquidation problems under price-sensitive market impact," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 979-1006.
    2. Pirrong, Craig, 2017. "The economics of commodity market manipulation: A survey," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 1-17.
    3. Paulwin Graewe & Ulrich Horst & Eric S'er'e, 2013. "Smooth solutions to portfolio liquidation problems under price-sensitive market impact," Papers 1309.0474, arXiv.org, revised Jun 2017.
    4. Peter Kratz, 2014. "An Explicit Solution of a Nonlinear-Quadratic Constrained Stochastic Control Problem with Jumps: Optimal Liquidation in Dark Pools with Adverse Selection," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1198-1220, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    3. Lokka, A. & Xu, Junwei, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model," LSE Research Online Documents on Economics 106977, London School of Economics and Political Science, LSE Library.
    4. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    5. Peter Kratz & Torsten Sch�neborn, 2014. "Optimal liquidation in dark pools," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1519-1539, September.
    6. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    7. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    8. Olivier Gu'eant, 2013. "Permanent market impact can be nonlinear," Papers 1305.0413, arXiv.org, revised Mar 2014.
    9. Phillip Monin, 2014. "Hedging Market Risk in Optimal Liquidation," Working Papers 14-08, Office of Financial Research, US Department of the Treasury.
    10. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation for a risk averse investor in a one-sided limit order book driven by a Levy process," Papers 2002.03379, arXiv.org, revised Oct 2020.
    11. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-24, December.
    12. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    13. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    15. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    16. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
    17. Olivier Gu'eant, 2012. "Optimal execution and block trade pricing: a general framework," Papers 1210.6372, arXiv.org, revised Dec 2014.
    18. Nico Achtsis & Dirk Nuyens, 2013. "A Monte Carlo method for optimal portfolio executions," Papers 1312.5919, arXiv.org.
    19. Xue Cheng & Marina Di Giacinto & Tai-Ho Wang, 2019. "Optimal execution with dynamic risk adjustment," Papers 1901.00617, arXiv.org, revised Jul 2019.
    20. Takashi Kato, 2011. "An Optimal Execution Problem with a Geometric Ornstein-Uhlenbeck Price Process," Papers 1107.1787, arXiv.org, revised Jul 2014.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1205.4008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.