IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1201.6544.html
   My bibliography  Save this paper

A Random Matrix Approach to Dynamic Factors in macroeconomic data

Author

Listed:
  • Ma{l}gorzata Snarska

Abstract

We show how random matrix theory can be applied to develop new algorithms to extract dynamic factors from macroeconomic time series. In particular, we consider a limit where the number of random variables N and the number of consecutive time measurements T are large but the ratio N / T is fixed. In this regime the underlying random matrices are asymptotically equivalent to Free Random Variables (FRV).Application of these methods for macroeconomic indicators for Poland economy is also presented.

Suggested Citation

  • Ma{l}gorzata Snarska, 2012. "A Random Matrix Approach to Dynamic Factors in macroeconomic data," Papers 1201.6544, arXiv.org.
  • Handle: RePEc:arx:papers:1201.6544
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1201.6544
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Rydlewski & Małgorzata Snarska & Dominik Mielczarek & Daniel Kosiorowski, 2014. "Sparse Methods for Analysis of Sparse Multivariate Data From Big Economic Databases," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(1), pages 111-132, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.6544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.