IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1112.4007.html
   My bibliography  Save this paper

Optimal Constrained Investment in the Cramer-Lundberg model

Author

Listed:
  • Tatiana Belkina
  • Christian Hipp
  • Shangzhen Luo
  • Michael Taksar

Abstract

We consider an insurance company whose surplus is represented by the classical Cramer-Lundberg process. The company can invest its surplus in a risk free asset and in a risky asset, governed by the Black-Scholes equation. There is a constraint that the insurance company can only invest in the risky asset at a limited leveraging level; more precisely, when purchasing, the ratio of the investment amount in the risky asset to the surplus level is no more than a; and when shortselling, the proportion of the proceeds from the short-selling to the surplus level is no more than b. The objective is to find an optimal investment policy that minimizes the probability of ruin. The minimal ruin probability as a function of the initial surplus is characterized by a classical solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation. We study the optimal control policy and its properties. The interrelation between the parameters of the model plays a crucial role in the qualitative behavior of the optimal policy. E.g., for some ratios between a and b, quite unusual and at first ostensibly counterintuitive policies may appear, like short-selling a stock with a higher rate of return to earn lower interest, or borrowing at a higher rate to invest in a stock with lower rate of return. This is in sharp contrast with the unrestricted case, first studied in Hipp and Plum (2000), or with the case of no shortselling and no borrowing studied in Azcue and Muler (2009).

Suggested Citation

  • Tatiana Belkina & Christian Hipp & Shangzhen Luo & Michael Taksar, 2011. "Optimal Constrained Investment in the Cramer-Lundberg model," Papers 1112.4007, arXiv.org.
  • Handle: RePEc:arx:papers:1112.4007
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1112.4007
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    2. Shangzhen Luo, 2008. "Ruin Minimization for Insurers with Borrowing Constraints," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(2), pages 143-174.
    3. Anna Frolova & Serguei Pergamenshchikov & Yuri Kabanov, 2002. "In the insurance business risky investments are dangerous," Finance and Stochastics, Springer, vol. 6(2), pages 227-235.
    4. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    5. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    6. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    7. Azcue, Pablo & Muler, Nora, 2009. "Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 26-34, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azcue, Pablo & Muler, Nora, 2009. "Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 26-34, February.
    2. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    3. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    4. Emms, P. & Haberman, S., 2007. "Asymptotic and numerical analysis of the optimal investment strategy for an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 113-134, January.
    5. Arash Fahim & Lingjiong Zhu, 2015. "Optimal Investment in a Dual Risk Model," Papers 1510.04924, arXiv.org, revised Feb 2023.
    6. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    7. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    8. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    9. Li, Ping & Zhao, Wu & Zhou, Wei, 2015. "Ruin probabilities and optimal investment when the stock price follows an exponential Lévy process," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 1030-1045.
    10. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    11. Schmidli, Hanspeter, 2005. "On optimal investment and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 25-35, February.
    12. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
    13. Zhang, Xin-Li & Zhang, Ke-Cun & Yu, Xing-Jiang, 2009. "Optimal proportional reinsurance and investment with transaction costs, I: Maximizing the terminal wealth," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 473-478, June.
    14. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    15. Zilan Liu & Yijun Wang & Ya Huang & Jieming Zhou, 2022. "Optimal Time-Consistent Investment and Premium Control Strategies for Insurers with Constraint under the Heston Model," Mathematics, MDPI, vol. 10(7), pages 1-22, March.
    16. Wang, Nan, 2007. "Optimal investment for an insurer with exponential utility preference," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 77-84, January.
    17. Landriault, David & Li, Bin & Loke, Sooie-Hoe & Willmot, Gordon E. & Xu, Di, 2017. "A note on the convexity of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 1-6.
    18. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    19. Arash Fahim & Lingjiong Zhu, 2023. "Optimal Investment in a Dual Risk Model," Risks, MDPI, vol. 11(2), pages 1-29, February.
    20. Hong Mao & Zhongkai Wen, 2020. "Optimal Decision on Dynamic Insurance Price and Investment Portfolio of an Insurer with Multi-dimensional Time-Varying Correlation," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(1), pages 29-51, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.4007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.