IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1110.5350.html
   My bibliography  Save this paper

A Quantum-like Approach to the Stock Market

Author

Listed:
  • Diederik Aerts
  • Bart D'Hooghe
  • Sandro Sozzo

Abstract

Modern approaches to stock pricing in quantitative finance are typically founded on the 'Black-Scholes model' and the underlying 'random walk hypothesis'. Empirical data indicate that this hypothesis works well in stable situations but, in abrupt transitions such as during an economical crisis, the random walk model fails and alternative descriptions are needed. For this reason, several proposals have been recently forwarded which are based on the formalism of quantum mechanics. In this paper we apply the 'SCoP formalism', elaborated to provide an operational foundation of quantum mechanics, to the stock market. We argue that a stock market is an intrinsically contextual system where agents' decisions globally influence the market system and stocks prices, determining a nonclassical behavior. More specifically, we maintain that a given stock does not generally have a definite value, e.g., a price, but its value is actualized as a consequence of the contextual interactions in the trading process. This contextual influence is responsible of the non-Kolmogorovian quantum-like behavior of the market at a statistical level. Then, we propose a 'sphere model' within our 'hidden measurement formalism' that describes a buying/selling process of a stock and shows that it is intuitively reasonable to assume that the stock has not a definite price until it is traded. This result is relevant in our opinion since it provides a theoretical support to the use of quantum models in finance.

Suggested Citation

  • Diederik Aerts & Bart D'Hooghe & Sandro Sozzo, 2011. "A Quantum-like Approach to the Stock Market," Papers 1110.5350, arXiv.org.
  • Handle: RePEc:arx:papers:1110.5350
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1110.5350
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.5350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.