IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1106.4957.html
   My bibliography  Save this paper

Maximum entropy distribution of stock price fluctuations

Author

Listed:
  • Rosario Bartiromo

Abstract

The principle of absence of arbitrage opportunities allows obtaining the distribution of stock price fluctuations by maximizing its information entropy. This leads to a physical description of the underlying dynamics as a random walk characterized by a stochastic diffusion coefficient and constrained to a given value of the expected volatility, taking in this way into account the information provided by the existence of an option market. This model is validated by a comprehensive comparison with observed distributions of both price return and diffusion coefficient. Expected volatility is the only parameter in the model and can be obtained by analysing option prices. We give an analytic formulation of the probability density function for price returns which can be used to extract expected volatility from stock option data. This distribution is of high practical interest since it should be preferred to a Gaussian when dealing with the problem of pricing derivative financial contracts.

Suggested Citation

  • Rosario Bartiromo, 2011. "Maximum entropy distribution of stock price fluctuations," Papers 1106.4957, arXiv.org, revised Oct 2013.
  • Handle: RePEc:arx:papers:1106.4957
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1106.4957
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudiu Vinte & Marcel Ausloos & Titus Felix Furtuna, 2022. "A Volatility Estimator of Stock Market Indices Based on the Intrinsic Entropy Model," Papers 2205.01370, arXiv.org.
    2. Secrest, J.A. & Conroy, J.M. & Miller, H.G., 2020. "A unified view of transport equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Gzyl, Henryk & ter Horst, Enrique & Molina, Germán, 2019. "A model-free, non-parametric method for density determination, with application to asset returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 210-221.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.4957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.