IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1105.5416.html
   My bibliography  Save this paper

Analytic results and weighted Monte Carlo simulations for CDO pricing

Author

Listed:
  • Marcell Stippinger
  • B'alint VetH{o}
  • 'Eva R'acz
  • Zsolt Bihary

Abstract

We explore the possibilities of importance sampling in the Monte Carlo pricing of a structured credit derivative referred to as Collateralized Debt Obligation (CDO). Modeling a CDO contract is challenging, since it depends on a pool of (typically about 100) assets, Monte Carlo simulations are often the only feasible approach to pricing. Variance reduction techniques are therefore of great importance. This paper presents an exact analytic solution using Laplace-transform and MC importance sampling results for an easily tractable intensity-based model of the CDO, namely the compound Poissonian. Furthermore analytic formulae are derived for the reweighting efficiency. The computational gain is appealing, nevertheless, even in this basic scheme, a phase transition can be found, rendering some parameter regimes out of reach. A model-independent transform approach is also presented for CDO pricing.

Suggested Citation

  • Marcell Stippinger & B'alint VetH{o} & 'Eva R'acz & Zsolt Bihary, 2011. "Analytic results and weighted Monte Carlo simulations for CDO pricing," Papers 1105.5416, arXiv.org.
  • Handle: RePEc:arx:papers:1105.5416
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1105.5416
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1105.5416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.