IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1103.5668.html
   My bibliography  Save this paper

Spectral Risk Measures and the Choice of Risk Aversion Function

Author

Listed:
  • kevin dowd
  • john cotter

Abstract

Spectral risk measures are attractive risk measures as they allow the user to obtain risk measures that reflect their risk-aversion functions. To date there has been very little guidance on the choice of risk-aversion functions underlying spectral risk measures. This paper addresses this issue by examining two popular risk aversion functions, based on exponential and power utility functions respectively. We find that the former yields spectral risk measures with nice intuitive properties, but the latter yields spectral risk measures that can have perverse properties. More work therefore needs to be done before we can be sure that arbitrary but respectable utility functions will always yield 'well-behaved' spectral risk measures.

Suggested Citation

  • kevin dowd & john cotter, 2011. "Spectral Risk Measures and the Choice of Risk Aversion Function," Papers 1103.5668, arXiv.org.
  • Handle: RePEc:arx:papers:1103.5668
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1103.5668
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moiz Ahmad & Muhammad Babar Ramzan & Muhammad Omair & Muhammad Salman Habib, 2024. "Integrating Risk-Averse and Constrained Reinforcement Learning for Robust Decision-Making in High-Stakes Scenarios," Mathematics, MDPI, vol. 12(13), pages 1-32, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1103.5668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.