IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1103.1243.html
   My bibliography  Save this paper

Randomizing world trade. I. A binary network analysis

Author

Listed:
  • Tiziano Squartini
  • Giorgio Fagiolo
  • Diego Garlaschelli

Abstract

The international trade network (ITN) has received renewed multidisciplinary interest due to recent advances in network theory. However, it is still unclear whether a network approach conveys additional, nontrivial information with respect to traditional international-economics analyses that describe world trade only in terms of local (first-order) properties. In this and in a companion paper, we employ a recently proposed randomization method to assess in detail the role that local properties have in shaping higher-order patterns of the ITN in all its possible representations (binary/weighted, directed/undirected, aggregated/disaggregated by commodity) and across several years. Here we show that, remarkably, the properties of all binary projections of the network can be completely traced back to the degree sequence, which is therefore maximally informative. Our results imply that explaining the observed degree sequence of the ITN, which has not received particular attention in economic theory, should instead become one the main focuses of models of trade.

Suggested Citation

  • Tiziano Squartini & Giorgio Fagiolo & Diego Garlaschelli, 2011. "Randomizing world trade. I. A binary network analysis," Papers 1103.1243, arXiv.org, revised Nov 2011.
  • Handle: RePEc:arx:papers:1103.1243
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1103.1243
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1103.1243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.