IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1011.5983.html
   My bibliography  Save this paper

Minimal model of financial stylized facts

Author

Listed:
  • Danilo Delpini
  • Giacomo Bormetti

Abstract

In this work we afford the statistical characterization of a linear Stochastic Volatility Model featuring Inverse Gamma stationary distribution for the instantaneous volatility. We detail the derivation of the moments of the return distribution, revealing the role of the Inverse Gamma law in the emergence of fat tails, and of the relevant correlation functions. We also propose a systematic methodology for estimating the parameters, and we describe the empirical analysis of the Standard & Poor 500 index daily returns, confirming the ability of the model to capture many of the established stylized fact as well as the scaling properties of empirical distributions over different time horizons.

Suggested Citation

  • Danilo Delpini & Giacomo Bormetti, 2010. "Minimal model of financial stylized facts," Papers 1011.5983, arXiv.org, revised Mar 2011.
  • Handle: RePEc:arx:papers:1011.5983
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1011.5983
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    2. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    3. D. Delpini & G. Bormetti, 2015. "Stochastic volatility with heterogeneous time scales," Quantitative Finance, Taylor & Francis Journals, vol. 15(10), pages 1597-1608, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1011.5983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.