IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1011.4732.html
   My bibliography  Save this paper

Solving Optimal Dividend Problems via Phase-type Fitting Approximation of Scale Functions

Author

Listed:
  • Masahiko Egami
  • Kazutoshi Yamazaki

Abstract

The optimal dividend problem by De Finetti (1957) has been recently generalized to the spectrally negative L\'evy model where the implementation of optimal strategies draws upon the computation of scale functions and their derivatives. This paper proposes a phase-type fitting approximation of the optimal strategy. We consider spectrally negative L\'evy processes with phase-type jumps as well as meromorphic L\'evy processes (Kuznetsov et al., 2010a), and use their scale functions to approximate the scale function for a general spectrally negative L\'evy process. We obtain analytically the convergence results and illustrate numerically the effectiveness of the approximation methods using examples with the spectrally negative L\'evy process with i.i.d. Weibull-distributed jumps, the \beta-family and CGMY process.

Suggested Citation

  • Masahiko Egami & Kazutoshi Yamazaki, 2010. "Solving Optimal Dividend Problems via Phase-type Fitting Approximation of Scale Functions," Papers 1011.4732, arXiv.org.
  • Handle: RePEc:arx:papers:1011.4732
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1011.4732
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Siu-Tang Leung & Kazutoshi Yamazaki, 2010. "American Step-Up and Step-Down Default Swaps under Levy Models," Papers 1012.3234, arXiv.org, revised Sep 2012.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1011.4732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.