IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.5808.html
   My bibliography  Save this paper

Heath-Jarrow-Morton-Musiela equation with linear volatility

Author

Listed:
  • Michal Barski
  • Jerzy Zabczyk

Abstract

The paper is concerned with the problem of existence of solutions for the Heath-Jarrow-Morton equation with linear volatility. Necessary conditions and sufficient conditions for the existence of weak solutions and strong solutions are provided. It is shown that the key role is played by the logarithmic growth conditions of the Laplace exponent.

Suggested Citation

  • Michal Barski & Jerzy Zabczyk, 2010. "Heath-Jarrow-Morton-Musiela equation with linear volatility," Papers 1010.5808, arXiv.org, revised Nov 2010.
  • Handle: RePEc:arx:papers:1010.5808
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.5808
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Di Masi & Tomas Björk & Wolfgang Runggaldier & Yuri Kabanov, 1997. "Towards a general theory of bond markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 141-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    2. Hinnerich, Mia, 2008. "Inflation-indexed swaps and swaptions," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2293-2306, November.
    3. Kühn, Christoph & Stroh, Maximilian, 2013. "Continuous time trading of a small investor in a limit order market," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2011-2053.
    4. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    5. Fontana, Claudio & Schmidt, Thorsten, 2018. "General dynamic term structures under default risk," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3353-3386.
    6. L. Steinruecke & R. Zagst & A. Swishchuk, 2015. "The Markov-switching jump diffusion LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 455-476, March.
    7. Wolfgang Kluge & Antonis Papapantoleon, 2009. "On the valuation of compositions in Levy term structure models," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 951-959.
    8. Gapeev Pavel V. & Küchler Uwe, 2006. "On Markovian short rates in term structure models driven by jump-diffusion processes," Statistics & Risk Modeling, De Gruyter, vol. 24(2), pages 255-271, December.
    9. Laurence Carassus & Emmanuel Temam, 2010. "Pricing and Hedging Basis Risk under No Good Deal Assumption," Working Papers hal-00498479, HAL.
    10. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    11. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    12. Albeverio, Sergio & Lytvynov, Eugene & Mahnig, Andrea, 2004. "A model of the term structure of interest rates based on Lévy fields," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 251-263, December.
    13. Ernst Eberlein & Jean Jacod & Sebastian Raible, 2005. "Lévy term structure models: No-arbitrage and completeness," Finance and Stochastics, Springer, vol. 9(1), pages 67-88, January.
    14. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.5808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.