IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.2865.html
   My bibliography  Save this paper

Long-term and blow-up behaviors of exponential moments in multi-dimensional affine diffusions

Author

Listed:
  • Rudra P. Jena
  • Kyoung-Kuk Kim
  • Hao Xing

Abstract

This paper considers multi-dimensional affine processes with continuous sample paths. By analyzing the Riccati system, which is associated with affine processes via the transform formula, we fully characterize the regions of exponents in which exponential moments of a given process do not explode at any time or explode at a given time. In these two cases, we also compute the long-term growth rate and the explosion rate for exponential moments. These results provide a handle to study implied volatility asymptotics in models where returns of stock prices are described by affine processes whose exponential moments do not have an explicit formula.

Suggested Citation

  • Rudra P. Jena & Kyoung-Kuk Kim & Hao Xing, 2010. "Long-term and blow-up behaviors of exponential moments in multi-dimensional affine diffusions," Papers 1010.2865, arXiv.org, revised May 2012.
  • Handle: RePEc:arx:papers:1010.2865
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.2865
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2012. "On parameter estimation for critical affine processes," Papers 1210.1866, arXiv.org, revised Mar 2013.
    2. Xiaowei Zhang & Peter W. Glynn, 2018. "Affine Jump-Diffusions: Stochastic Stability and Limit Theorems," Papers 1811.00122, arXiv.org.
    3. Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2013. "Stationarity and ergodicity for an affine two factor model," Papers 1302.2534, arXiv.org, revised Sep 2013.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.2865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.