IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1009.4835.html
   My bibliography  Save this paper

Financial LPPL Bubbles with Mean-Reverting Noise in the Frequency Domain

Author

Listed:
  • Vincenzo Liberatore

Abstract

The log-periodic power law (LPPL) is a model of asset prices during endogenous bubbles. A major open issue is to verify the presence of LPPL in price sequences and to estimate the LPPL parameters. Estimation is complicated by the fact that daily LPPL returns are typically orders of magnitude smaller than measured price returns, suggesting that noise obscures the underlying LPPL dynamics. However, if noise is mean-reverting, it would quickly cancel out over subsequent measurements. In this paper, we attempt to reject mean-reverting noise from price sequences by exploiting frequency-domain properties of LPPL and of mean reversion. First, we calculate the spectrum of mean-reverting \ou noise and devise estimators for the noise's parameters. Then, we derive the LPPL spectrum by breaking it down into its two main characteristics of power law and of log-periodicity. We compare price spectra with noise spectra during historical bubbles. In general, noise was strong also at low frequencies and, even if LPPL underlied price dynamics, LPPL would be obscured by noise.

Suggested Citation

  • Vincenzo Liberatore, 2010. "Financial LPPL Bubbles with Mean-Reverting Noise in the Frequency Domain," Papers 1009.4835, arXiv.org, revised Jan 2011.
  • Handle: RePEc:arx:papers:1009.4835
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1009.4835
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1009.4835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.