IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1009.2696.html
   My bibliography  Save this paper

A contribution to the systematics of stochastic volatility models

Author

Listed:
  • Frantisek Slanina

Abstract

We compare systematically several classes of stochastic volatility models of stock market fluctuations. We show that the long-time return distribution is either Gaussian or develops a power-law tail, while the short-time return distribution has generically a stretched-exponential form, but can assume also an algebraic decay, in the family of models which we call ``GARCH''-type. The intermediate regime is found in the exponential Ornstein-Uhlenbeck process. We calculate also the decay of the autocorrelation function of volatility.

Suggested Citation

  • Frantisek Slanina, 2010. "A contribution to the systematics of stochastic volatility models," Papers 1009.2696, arXiv.org.
  • Handle: RePEc:arx:papers:1009.2696
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1009.2696
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
    2. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1009.2696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.