IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1006.3337.html
   My bibliography  Save this paper

Bounds on Stock Price probability distributions in Local-Stochastic Volatility models

Author

Listed:
  • Vlad Bally
  • Stefano De Marco

Abstract

We show that in a large class of stochastic volatility models with additional skew-functions (local-stochastic volatility models) the tails of the cumulative distribution of the log-returns behave as exp(-c|y|), where c is a positive constant depending on time and on model parameters. We obtain this estimate proving a stronger result: using some estimates for the probability that Ito processes remain around a deterministic curve from Bally et al. '09, we lower bound the probability that the couple (X,V) remains around a two-dimensional curve up to a given maturity, X being the log-return process and V its instantaneous variance. Then we find the optimal curve leading to the bounds on the terminal cdf. The method we rely on does not require inversion of characteristic functions but works for general coefficients of the underlying SDE (in particular, no affine structure is needed). Even though the involved constants are less sharp than the ones derived for stochastic volatility models with a particular structure, our lower bounds entail moment explosion, thus implying that Black-Scholes implied volatility always displays wings in the considered class of models. In a second part of this paper, using Malliavin calculus techniques, we show that an analogous estimate holds for the density of the log-returns as well.

Suggested Citation

  • Vlad Bally & Stefano De Marco, 2010. "Bounds on Stock Price probability distributions in Local-Stochastic Volatility models," Papers 1006.3337, arXiv.org.
  • Handle: RePEc:arx:papers:1006.3337
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1006.3337
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    2. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    3. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    4. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    5. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    6. Leluc, Rémi & Portier, François & Zhuman, Aigerim & Segers, Johan, 2023. "Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence," LIDAM Discussion Papers ISBA 2023019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    8. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    9. Wenli Zhu & Xinfeng Ruan, 2019. "Pricing Swaps on Discrete Realized Higher Moments Under the Lévy Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 507-532, February.
    10. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    11. Bartkute, Vaida & Sakalauskas, Leonidas, 2007. "Simultaneous perturbation stochastic approximation of nonsmooth functions," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1174-1188, September.
    12. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    13. Corradi, Valentina & Distaso, Walter & Mele, Antonio, 2008. "Macroeconomic determinants of stock market returns, volatility and volatility risk-premia," LSE Research Online Documents on Economics 24436, London School of Economics and Political Science, LSE Library.
    14. Fabio Baschetti & Giacomo Bormetti & Silvia Romagnoli & Pietro Rossi, 2020. "The SINC way: A fast and accurate approach to Fourier pricing," Papers 2009.00557, arXiv.org, revised May 2021.
    15. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    16. Stefano Pagliarani & Andrea Pascucci, 2017. "The exact Taylor formula of the implied volatility," Finance and Stochastics, Springer, vol. 21(3), pages 661-718, July.
    17. Lei Fan & Justin Sirignano, 2024. "Machine Learning Methods for Pricing Financial Derivatives," Papers 2406.00459, arXiv.org.
    18. Ye Du & Shan Xue & Yanchu Liu, 2019. "Robust upper bounds for American put options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 3-14, January.
    19. Grigory Beliavsky & Natalya Danilova & Guennady Ougolnitsky, 2019. "Calculation of Probability of the Exit of a Stochastic Process from a Band by Monte-Carlo Method: A Wiener-Hopf Factorization," Mathematics, MDPI, vol. 7(7), pages 1-8, June.
    20. Pierdzioch, Christian, 2000. "Noise Traders? Trigger Rates, FX Options, and Smiles," Kiel Working Papers 970, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1006.3337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.