IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.5037.html
   My bibliography  Save this paper

Convenient Multiple Directions of Stratification

Author

Listed:
  • Benjamin Jourdain
  • Bernard Lapeyre
  • Piergiacomo Sabino

Abstract

This paper investigates the use of multiple directions of stratification as a variance reduction technique for Monte Carlo simulations of path-dependent options driven by Gaussian vectors. The precision of the method depends on the choice of the directions of stratification and the allocation rule within each strata. Several choices have been proposed but, even if they provide variance reduction, their implementation is computationally intensive and not applicable to realistic payoffs, in particular not to Asian options with barrier. Moreover, all these previously published methods employ orthogonal directions for multiple stratification. In this work we investigate the use of algorithms producing convenient directions, generally non-orthogonal, combining a lower computational cost with a comparable variance reduction. In addition, we study the accuracy of optimal allocation in terms of variance reduction compared to the Latin Hypercube Sampling. We consider the directions obtained by the Linear Transformation and the Principal Component Analysis. We introduce a new procedure based on the Linear Approximation of the explained variance of the payoff using the law of total variance. In addition, we exhibit a novel algorithm that permits to correctly generate normal vectors stratified along non-orthogonal directions. Finally, we illustrate the efficiency of these algorithms in the computation of the price of different path-dependent options with and without barriers in the Black-Scholes and in the Cox-Ingersoll-Ross markets.

Suggested Citation

  • Benjamin Jourdain & Bernard Lapeyre & Piergiacomo Sabino, 2010. "Convenient Multiple Directions of Stratification," Papers 1004.5037, arXiv.org.
  • Handle: RePEc:arx:papers:1004.5037
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.5037
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.5037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.