IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1003.2981.html
   My bibliography  Save this paper

Statistical identification with hidden Markov models of large order splitting strategies in an equity market

Author

Listed:
  • Gabriella Vaglica
  • Fabrizio Lillo
  • Rosario N. Mantegna

Abstract

Large trades in a financial market are usually split into smaller parts and traded incrementally over extended periods of time. We address these large trades as hidden orders. In order to identify and characterize hidden orders we fit hidden Markov models to the time series of the sign of the tick by tick inventory variation of market members of the Spanish Stock Exchange. Our methodology probabilistically detects trading sequences, which are characterized by a net majority of buy or sell transactions. We interpret these patches of sequential buying or selling transactions as proxies of the traded hidden orders. We find that the time, volume and number of transactions size distributions of these patches are fat tailed. Long patches are characterized by a high fraction of market orders and a low participation rate, while short patches have a large fraction of limit orders and a high participation rate. We observe the existence of a buy-sell asymmetry in the number, average length, average fraction of market orders and average participation rate of the detected patches. The detected asymmetry is clearly depending on the local market trend. We also compare the hidden Markov models patches with those obtained with the segmentation method used in Vaglica {\it et al.} (2008) and we conclude that the former ones can be interpreted as a partition of the latter ones.

Suggested Citation

  • Gabriella Vaglica & Fabrizio Lillo & Rosario N. Mantegna, 2010. "Statistical identification with hidden Markov models of large order splitting strategies in an equity market," Papers 1003.2981, arXiv.org.
  • Handle: RePEc:arx:papers:1003.2981
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1003.2981
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stuart Barber, 2008. "Book Review," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(12), pages 1427-1428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    2. Angelo Carollo & Gabriella Vaglica & Fabrizio Lillo & Rosario N. Mantegna, 2012. "Trading activity and price impact in parallel markets: SETS vs. off-book market at the London Stock Exchange," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 517-530, November.
    3. Ioanna-Yvonni Tsaknaki & Fabrizio Lillo & Piero Mazzarisi, 2023. "Online Learning of Order Flow and Market Impact with Bayesian Change-Point Detection Methods," Papers 2307.02375, arXiv.org, revised May 2024.
    4. Fei Ren & Li-Xin Zhong, 2011. "Price impact asymmetry of institutional trading in Chinese stock market," Papers 1110.3133, arXiv.org.
    5. Rocco Caferra & Gabriele Tedeschi & Andrea Morone, 2023. "Agents interaction and price dynamics: evidence from the laboratory," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(2), pages 251-274, April.
    6. Ren, Fei & Zhong, Li-Xin, 2012. "The price impact asymmetry of institutional trading in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2667-2677.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1003.2981. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.