IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1002.2604.html
   My bibliography  Save this paper

The two defaults scenario for stressing credit portfolio loss distributions

Author

Listed:
  • Dirk Tasche

Abstract

The impact of a stress scenario of default events on the loss distribution of a credit portfolio can be assessed by determining the loss distribution conditional on these events. While it is conceptually easy to estimate loss distributions conditional on default events by means of Monte Carlo simulation, it becomes impractical for two or more simultaneous defaults as then the conditioning event is extremely rare. We provide an analytical approach to the calculation of the conditional loss distribution for the CreditRisk+ portfolio model with independent random loss given default distributions. The analytical solution for this case can be used to check the accuracy of an approximation to the conditional loss distribution whereby the unconditional model is run with stressed input probabilities of default (PDs). It turns out that this approximation is unbiased. Numerical examples, however, suggest that the approximation may be seriously inaccurate but that the inaccuracy leads to overestimation of tail losses and hence the approach errs on the conservative side.

Suggested Citation

  • Dirk Tasche, 2010. "The two defaults scenario for stressing credit portfolio loss distributions," Papers 1002.2604, arXiv.org, revised Oct 2015.
  • Handle: RePEc:arx:papers:1002.2604
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1002.2604
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1002.2604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.