IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1001.4098.html
   My bibliography  Save this paper

Extra-Dimensional Approach to Option Pricing and Stochastic Volatility

Author

Listed:
  • Minh Q. Truong

Abstract

The generalized 5D Black-Scholes differential equation with stochastic volatility is derived. The projections of the stochastic evolutions associated with the random variables from an enlarged space or superspace onto an ordinary space can be achieved via higher-dimensional operators. The stochastic nature of the securities and volatility associated with the 3D Merton-Garman equation can then be interpreted as the effects of the extra dimensions. We showed that the Merton-Garman equation is the first excited state, i.e. n=m=1, within a family which contain an infinite numbers of Merton-Garman-like equations.

Suggested Citation

  • Minh Q. Truong, 2010. "Extra-Dimensional Approach to Option Pricing and Stochastic Volatility," Papers 1001.4098, arXiv.org, revised Feb 2010.
  • Handle: RePEc:arx:papers:1001.4098
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1001.4098
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yingxue & Yang, Liu & Cheng, T.C.E. & Ma, Lijun & Shao, Xinjian, 2013. "A value-based approach to option pricing: The case of supply chain options," International Journal of Production Economics, Elsevier, vol. 143(1), pages 171-177.
    2. Tang, Cheng Yong & Chen, Song Xi, 2009. "Parameter estimation and bias correction for diffusion processes," Journal of Econometrics, Elsevier, vol. 149(1), pages 65-81, April.
    3. Burak Saltoglu, 2003. "Comparing forecasting ability of parametric and non-parametric methods: an application with Canadian monthly interest rates," Applied Financial Economics, Taylor & Francis Journals, vol. 13(3), pages 169-176.
    4. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    5. Gady Jacoby & Chuan Liao & Jonathan A. Batten, 2007. "A Pure Test for the Elasticity of Yield Spreads," The Institute for International Integration Studies Discussion Paper Series iiisdp195, IIIS.
    6. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    7. Dankenbring, Henning, 1998. "Volatility estimates of the short term interest rate with an application to German data," SFB 373 Discussion Papers 1998,96, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Bilgi Yilmaz & A. Sevtap Selcuk-Kestel, 2019. "Computation of Hedging Coefficients for Mortgage Default and Prepayment Options: Malliavin Calculus Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 59(4), pages 673-697, November.
    9. Martin Gremm, 2016. "Global Gauge Symmetries, Risk-Free Portfolios, and the Risk-Free Rate," Papers 1605.03551, arXiv.org.
    10. Ilker Ersegun Kayhan & Glenn P. Jenkins, 2016. "Determination of Socially Equitable Guarantees for PPPs: A Toll-Road Case from Turkey," Development Discussion Papers 2016-06, JDI Executive Programs.
    11. Norden, Lars, 2003. "Asymmetric option price distribution and bid-ask quotes: consequences for implied volatility smiles," Journal of Multinational Financial Management, Elsevier, vol. 13(4-5), pages 423-441, December.
    12. Leluc, Rémi & Portier, François & Zhuman, Aigerim & Segers, Johan, 2023. "Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence," LIDAM Discussion Papers ISBA 2023019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    14. Loncarski, I. & Ter Horst, J.R. & Veld, C.H., 2006. "Why do Companies issue Convertible Bond Loans? An Empirical Analysis for the Canadian Market," Discussion Paper 2006-65, Tilburg University, Center for Economic Research.
    15. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    16. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    17. Boyle, Glenn & Clyne, Stefan & Roberts, Helen, 2005. "Valuing Employee Stock Options: Implications for the Implementation of NZ IFRS 2," Working Paper Series 18949, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    18. Miller, M. & Weller, P., 1988. "Solving Stochastic Saddlepoint Systems: A Qualitative Treatment With Economic Applications," The Warwick Economics Research Paper Series (TWERPS) 309, University of Warwick, Department of Economics.
    19. Gürtler, Marc & Rauh, Ronald, 2012. "Challenging traditional risk models by a non-stationary approach with nonparametric heteroscedasticity," Working Papers IF41V1, Technische Universität Braunschweig, Institute of Finance.
    20. Vorst, A. C. F., 1988. "Option Pricing And Stochastic Processes," Econometric Institute Archives 272366, Erasmus University Rotterdam.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1001.4098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.