IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0812.2000.html
   My bibliography  Save this paper

Correlated Random Walks and the Joint Survival Probability

Author

Listed:
  • Mark B. Wise
  • Vineer Bhansali

Abstract

First passage models, where corporate assets undergo correlated random walks and a company defaults if its assets fall below a threshold provide an attractive framework for modeling the default process. Typical one year default correlations are small, i.e., of order a few percent, but nonetheless including correlations is very important, for managing portfolio credit risk and pricing some credit derivatives (e.g. first to default baskets). In first passage models the exact dependence of the joint survival probability of more than two firms on their asset correlations is not known. We derive an expression for the dependence of the joint survival probability of $n$ firms on their asset correlations using first order perturbation theory in the correlations. It includes all terms that are linear in the correlations but neglects effects of quadratic and higher order. For constant time independent correlations we compare the first passage model expression for the joint survival probability with what a multivariate normal Copula function gives. As a practical application of our results we calculate the dependence of the five year joint survival probability for five basic industrials on their asset correlations.

Suggested Citation

  • Mark B. Wise & Vineer Bhansali, 2008. "Correlated Random Walks and the Joint Survival Probability," Papers 0812.2000, arXiv.org.
  • Handle: RePEc:arx:papers:0812.2000
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0812.2000
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Liang & Jun Ma & Tao Wang & Qin Ji, 2011. "Valuation of Portfolio Credit Derivatives with Default Intensities Using the Vasicek Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(1), pages 33-54, March.
    2. G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2020. "Asymptotics and Approximations of Ruin Probabilities for Multivariate Risk Processes in a Markovian Environment," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 927-948, September.
    3. Metzler, Adam, 2010. "On the first passage problem for correlated Brownian motion," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 277-284, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0812.2000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.