IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0804.0902.html
   My bibliography  Save this paper

Time vs. Ensemble Averages for Nonstationary Time Series

Author

Listed:
  • Joseph L. McCauley

Abstract

We analyze the question whether sliding window time averages applied to stationary increment processes converge to a limit in probability. The question centers on averages, correlations, and densities constructed via time averages of the increment x(t,T)=x(t+T)-x(t)and the assumption is that the increment is distributed independently of t. We show that the condition for applying Tchebyshev's Theorem to time averages of functions of stationary increments is strongly violated. We argue that, for both stationary and nonstationary increments, Tchebyshev's Theorem provides the basis for constructing emsemble averages and densities from a single, historic time series if, as in FX markets, the series shows a definite statistical periodicity on the average.

Suggested Citation

  • Joseph L. McCauley, 2008. "Time vs. Ensemble Averages for Nonstationary Time Series," Papers 0804.0902, arXiv.org.
  • Handle: RePEc:arx:papers:0804.0902
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0804.0902
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    2. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
    3. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2009. "Is integration I(d) applicable to observed economics and finance time series?," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 101-108, June.
    4. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0804.0902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.