IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0705.0076.html
   My bibliography  Save this paper

Deterministic Factors of Stock Networks based on Cross-correlation in Financial Market

Author

Listed:
  • Cheoljun Eom
  • Gabjin Oh
  • Seunghwan Kim

Abstract

The stock market has been known to form homogeneous stock groups with a higher correlation among different stocks according to common economic factors that influence individual stocks. We investigate the role of common economic factors in the market in the formation of stock networks, using the arbitrage pricing model reflecting essential properties of common economic factors. We find that the degree of consistency between real and model stock networks increases as additional common economic factors are incorporated into our model. Furthermore, we find that individual stocks with a large number of links to other stocks in a network are more highly correlated with common economic factors than those with a small number of links. This suggests that common economic factors in the stock market can be understood in terms of deterministic factors.

Suggested Citation

  • Cheoljun Eom & Gabjin Oh & Seunghwan Kim, 2007. "Deterministic Factors of Stock Networks based on Cross-correlation in Financial Market," Papers 0705.0076, arXiv.org.
  • Handle: RePEc:arx:papers:0705.0076
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0705.0076
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eom, Cheoljun & Jung, Woo-Sung & Kaizoji, Taisei & Kim, Seunghwan, 2009. "Effect of changing data size on eigenvalues in the Korean and Japanese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4780-4786.
    2. Eom, Cheoljun & Park, Jong Won, 2017. "Effects of common factors on stock correlation networks and portfolio diversification," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 1-11.
    3. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    4. B. Goswami & G. Ambika & N. Marwan & J. Kurths, 2011. "On interrelations of recurrences and connectivity trends between stock indices," Papers 1103.5189, arXiv.org.
    5. Jang, Wooseok & Lee, Junghoon & Chang, Woojin, 2011. "Currency crises and the evolution of foreign exchange market: Evidence from minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 707-718.
    6. Goswami, B. & Ambika, G. & Marwan, N. & Kurths, J., 2012. "On interrelations of recurrences and connectivity trends between stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4364-4376.
    7. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    8. Kazemilari, Mansooreh & Djauhari, Maman Abdurachman, 2015. "Correlation network analysis for multi-dimensional data in stocks market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 62-75.
    9. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    10. Songtao Wu & Jianmin He & Chao Wang, 2017. "Effects of Common Factors on Dynamics of Stocks Traded by Investors with Limited Information Capacity," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-15, September.
    11. Mansooreh Kazemilari & Maman Abdurachman Djauhari & Zuhaimy Ismail, 2016. "Foreign Exchange Market Performance: Evidence from Bivariate Time Series Approach," Papers 1608.07694, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0705.0076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.