IDEAS home Printed from https://ideas.repec.org/p/aob/wpaper/7.html
   My bibliography  Save this paper

Оценка и анализ эффективности применения динамической факторной модели для оценивания и прогнозирования ВВП на примере Казахстан // Evaluation and analysis of the effectiveness of the use of a dynamic factor model for estimating and forecasting GDP on the example of Kazakhstan

Author

Listed:
  • Орлов Константин // Orlov Konstantin

    (National Bank of Kazakhstan)

Abstract

В настоящей работе была проведена оценка эффективности динамических факторных моделей в прогнозировании ВВП Казахстана для текущего и будущих кварталов, доказана целесообразность применения данных моделей, а также получено факторное разложение динамики ВВП. Факторы были поделены на группы и включали в себя показатели реального и внешнего, финансового, денежного, ценового блоков. // In this paper, the effectiveness of dynamic factor models in forecasting Kazakhstan's GDP for the current and future quarters was assessed, the expediency of using these models was proved, and a factor decomposition of the dynamics of GDP was obtained. The factors were divided into groups and included indicators of real and external, financial, monetary, and price blocks.

Suggested Citation

  • Орлов Константин // Orlov Konstantin, 2019. "Оценка и анализ эффективности применения динамической факторной модели для оценивания и прогнозирования ВВП на примере Казахстан // Evaluation and analysis of the effectiveness of the use of a dynamic," Working Papers #2019-4, National Bank of Kazakhstan.
  • Handle: RePEc:aob:wpaper:7
    as

    Download full text from publisher

    File URL: https://nationalbank.kz/file/download/8979
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    GDP; short-term forecasts; dynamic factor models; principal component analysis; Kalman filter; ВВП; краткосрочные прогнозы; динамические факторные модели; метод главных компонент; фильтр Кальмана;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aob:wpaper:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Saida Agambayeva (email available below). General contact details of provider: https://edirc.repec.org/data/nbkgvkz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.