IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2017003.html
   My bibliography  Save this paper

What makes a solution good? The generation of problem-specific knowledge for heuristics

Author

Listed:
  • ARNOLD, Florian
  • SÖRENSEN, Kenneth

Abstract

Heuristics are the weapon of choice when it comes to solving complex combinatorial optimization problems. Even though some research focuses on tuning a heuristic with respect to a certain problem, little research has been done to investigate structural characteristics of the problem itself. In this paper we argue that knowledge about a problem is highly valuable when it comes to designing effi cient heuristics, and we show how it can be generated. With knowledge we hereby mean that we can defi?ne desirable structural characteristics of good solutions. Our knowledge generation approach is based on data mining and we demonstrate its concept with the help of the most prominent combinatorial problem in Operations Research, the Vehicle Routing Problem. We de?fine metrics to measure a solution and an instance, and generate and classify 192.000 solutions for various instances. With these metrics we are able to distinguish between optimal and non-optimal solutions with an accuracy of up to 93%. Furthermore, we reveal the most distinguishing characteristics of good VRP solutions, and use them to improve an existing heuristic.

Suggested Citation

  • ARNOLD, Florian & SÖRENSEN, Kenneth, 2017. "What makes a solution good? The generation of problem-specific knowledge for heuristics," Working Papers 2017003, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2017003
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/7ad34f/140763.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ARNOLD, Florian & SÖRENSEN, Kenneth, 2017. "A simple, deterministic, and efficient knowledge-driven heuristic for the vehicle routing problem," Working Papers 2017012, University of Antwerp, Faculty of Business and Economics.

    More about this item

    Keywords

    Multi-depot vehicle routing problem; Multi-product; Inventory management; Inventory allocation; Metaheuristics;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2017003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.