Dynamic Factor Models in gretl. The DFM package
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Breitung, Jörg & Tenhofen, Jörn, 2011. "GLS Estimation of Dynamic Factor Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1150-1166.
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011.
"A two-step estimator for large approximate dynamic factor models based on Kalman filtering,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," PSE-Ecole d'économie de Paris (Postprint) hal-00638009, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638009, HAL.
- Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00638009, HAL.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2007. "A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering," CEPR Discussion Papers 6043, C.E.P.R. Discussion Papers.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Romain Houssa & Lasse Bork & Hans Dewachter, 2008.
"Identification of Macroeconomic Factors in Large Panels,"
Working Papers
1010, University of Namur, Department of Economics.
- Lasse BORK & Hans DEWACHTER & Romain HOUSSA, 2009. "Identification of macroeconomic factors in large panels," Working Papers of Department of Economics, Leuven ces09.18, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
- Lasse Bork & Hans Dewachter & Romain Houssa, 2009. "Identification of Macroeconomic Factors in Large Panels," CREATES Research Papers 2009-43, Department of Economics and Business Economics, Aarhus University.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Jörg Breitung & Sandra Eickmeier, 2006.
"Dynamic Factor Models,"
Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 3, pages 25-40,
Springer.
- Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 27-42, March.
- Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank.
- repec:hal:journl:peer-00844811 is not listed on IDEAS
- R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
- Clements, Michael P. & Hendry, David F. (ed.), 2011. "The Oxford Handbook of Economic Forecasting," OUP Catalogue, Oxford University Press, number 9780195398649.
- Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018.
"A spectral EM algorithm for dynamic factor models,"
Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
- Gabriele Fiorentini & Alessandro Galesi & Enrique Sentana, 2014. "A Spectral EM Algorithm for Dynamic Factor Models," Working Papers wp2014_1411, CEMFI.
- Gabriele Fiorentini & Alessandro Galesi & Enrique Sentana, 2016. "A spectral EM algorithm for dynamic factor models," Working Papers 1619, Banco de España.
- Sentana, Enrique & Galesi, Alessandro, 2015. "A spectral EM algorithm for dynamic factor models," CEPR Discussion Papers 10417, C.E.P.R. Discussion Papers.
- Jushan Bai & Kunpeng Li, 2016.
"Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension,"
The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
- Bai, Jushan & Li, Kunpeng, 2012. "Maximum likelihood estimation and inference for approximate factor models of high dimension," MPRA Paper 42099, University Library of Munich, Germany, revised 19 Oct 2012.
- Lasse Bork, 2009.
"Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach,"
CREATES Research Papers
2009-11, Department of Economics and Business Economics, Aarhus University.
- Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- repec:dgr:rugccs:200605 is not listed on IDEAS
- J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
- Taylor, Robert, 2007. "New Introduction to Multiple Time Series Analysis, Helmut Lutkepohl. Springer-Verlag (2005), ISBN 3-540-40172-5 (hardcover), 149.95 [euro], ISBN 3-540-26239-3 (softcover), 54.95 [euro], 764 pages," International Journal of Forecasting, Elsevier, vol. 23(1), pages 152-153.
- Marta Bańbura & Michele Modugno, 2014.
"Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
- Bańbura, Marta & Modugno, Michele, 2010. "Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data," Working Paper Series 1189, European Central Bank.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
- Jushan Bai & Peng Wang, 2015. "Identification and Bayesian Estimation of Dynamic Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 221-240, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lucchetti, Riccardo & Venetis, Ioannis A., 2020.
"A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012),"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-14.
- Lucchetti, Riccardo & Venetis, Ioannis A., 2020. "A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012)," Economics Discussion Papers 2020-5, Kiel Institute for the World Economy (IfW Kiel).
- Salamaliki, Paraskevi, 2019. "Assessing labor market conditions in Greece: a note," MPRA Paper 97559, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Matteo Barigozzi & Matteo Luciani, 2019.
"Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm,"
Papers
1910.03821, arXiv.org, revised Sep 2024.
- Matteo Barigozzi & Matteo Luciani, 2024. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Finance and Economics Discussion Series 2024-086, Board of Governors of the Federal Reserve System (U.S.).
- Juho Koistinen & Bernd Funovits, 2022. "Estimation of Impulse-Response Functions with Dynamic Factor Models: A New Parametrization," Papers 2202.00310, arXiv.org, revised Feb 2022.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Pilar Poncela & Esther Ruiz, 2016.
"Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434,
Emerald Group Publishing Limited.
- Poncela, Pilar, 2015. "Small versus big-data factor extraction in Dynamic Factor Models: An empirical assessment," DES - Working Papers. Statistics and Econometrics. WS ws1502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Fornero, Jorge & Kirchner, Markus & Molina, Carlos, 2024.
"Estimating shadow policy rates in a small open economy and the role of foreign factors,"
Journal of International Money and Finance, Elsevier, vol. 140(C).
- Jorge Fornero & Markus Kirchner & Carlos Molina, 2021. "Estimating Shadow Policy Rates in a Small Open Economy and the Role of Foreign Factors," Working Papers Central Bank of Chile 915, Central Bank of Chile.
- Monica Defend & Aleksey Min & Lorenzo Portelli & Franz Ramsauer & Francesco Sandrini & Rudi Zagst, 2021. "Quantifying Drivers of Forecasted Returns Using Approximate Dynamic Factor Models for Mixed-Frequency Panel Data," Forecasting, MDPI, vol. 3(1), pages 1-35, February.
- Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
- Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
- Lucchetti, Riccardo & Venetis, Ioannis A., 2020.
"A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012),"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-14.
- Lucchetti, Riccardo & Venetis, Ioannis A., 2020. "A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012)," Economics Discussion Papers 2020-5, Kiel Institute for the World Economy (IfW Kiel).
- Luke Hartigan & Michelle Wright, 2021. "Financial Conditions and Downside Risk to Economic Activity in Australia," RBA Research Discussion Papers rdp2021-03, Reserve Bank of Australia.
- Poncela, Pilar, 2021. "Dynamic factor models: does the specification matter?," DES - Working Papers. Statistics and Econometrics. WS 32210, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Bork, Lasse, 2009.
"Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach,"
Finance Research Group Working Papers
F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- Lasse Bork, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," CREATES Research Papers 2009-11, Department of Economics and Business Economics, Aarhus University.
- Helmut Lütkepohl, 2014.
"Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey,"
Discussion Papers of DIW Berlin
1351, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015.
"Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
- Giannone, Domenico & Bańbura, Marta & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," Working Paper Series 1733, European Central Bank.
- Giannone, Domenico & Banbura, Marta & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," CEPR Discussion Papers 9931, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Michèle Lenza, 2014. "Conditional Forecasts and Scenario Analysis with Vector Autoregressions for Large Cross-Sections," Working Papers ECARES ECARES 2014-15, ULB -- Universite Libre de Bruxelles.
- Matteo Barigozzi & Marc Hallin, 2024.
"The Dynamic, the Static, and the Weak Factor Models and the Analysis of High-Dimensional Time Series,"
Working Papers ECARES
2024-14, ULB -- Universite Libre de Bruxelles.
- Matteo Barigozzi & Marc Hallin, 2024. "The Dynamic, the Static, and the Weak factor models and the analysis of high-dimensional time series," Papers 2407.10653, arXiv.org.
- Franz Ramsauer & Aleksey Min & Michael Lingauer, 2019. "Estimation of FAVAR Models for Incomplete Data with a Kalman Filter for Factors with Observable Components," Econometrics, MDPI, vol. 7(3), pages 1-43, July.
- repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
- Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
- Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
More about this item
Keywords
Dynamic factor models; EM algorithm; Kalman filter; Principal components;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2019-01-28 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anc:wgretl:7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maurizio Mariotti (email available below). General contact details of provider: https://edirc.repec.org/data/deancit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.