IDEAS home Printed from https://ideas.repec.org/p/ams/ndfwpp/03-10.html
   My bibliography  Save this paper

Nonlocal onset of instability in an asset pricing model with heterogeneous agents

Author

Listed:
  • Gaunersdorfer, A.

    (University of Vienna)

  • Hommes, C.H.
  • Wagener, F.O.O.

    (Universiteit van Amsterdam)

Abstract

Empirical time series of financial market data, like day-to-day stock returns, exhibit the phenomenon that although usually tomorrow's price is unpredictable, the absolute value of the price change is correlated with the magnitude of past price changes; though the corresponding correlation coefficients are not very large, they are significantly different from zero. This phenomenon is known as `volatility clustering' in the financial liturature. In this note a micro-economic model of volatility clustering, introduced by Gaunersdorfer and Hommes, will be analysed. The deterministic skeleton of the model has a Chenciner bifurcation, and hence periodic points and invariant quasi-periodic circles coexisting with the `fundamental' equilibrium. Adding noise in form of stochastic supply shocks, volatility clustering is generated by the system jumping between the bases of attraction of the fundamental equilibrium (low volatility), and that of the non-fundamental attractor (high volatility).

Suggested Citation

  • Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2003. "Nonlocal onset of instability in an asset pricing model with heterogeneous agents," CeNDEF Working Papers 03-10, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  • Handle: RePEc:ams:ndfwpp:03-10
    as

    Download full text from publisher

    File URL: http://cendef.uva.nl/binaries/content/assets/subsites/amsterdam-school-of-economics/amsterdam-school-of-economics-research-institute/cendef/working-papers-2003/preprint_03_10.pdf?1417180696148
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Chiarella, Carl & He, Xue-Zhong, 2002. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 95-132, February.
    3. Brock, William A. & de Fontnouvelle, Patrick, 2000. "Expectational diversity in monetary economies," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 725-759, June.
    4. Carl Chiarella & Xue-Zhong He, 2000. "Stability of Competitive Equilibria with Heterogeneous Beliefs and Learning," Research Paper Series 37, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    6. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    7. Cees Diks & Roy van der Weide, 2003. "Continuous Beliefs Dynamics," Tinbergen Institute Discussion Papers 03-007/1, Tinbergen Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    2. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    3. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2001. "Evolutionary Dynamics in Financial Markets With Many Trader Types," CeNDEF Working Papers 01-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    4. He, Xue-Zhong & Li, Kai & Wang, Chuncheng, 2016. "Volatility clustering: A nonlinear theoretical approach," Journal of Economic Behavior & Organization, Elsevier, vol. 130(C), pages 274-297.
    5. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    6. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    7. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    8. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    10. Christian Peretti, 2007. "Long Memory and Hysteresis," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 363-389, Springer.
    11. Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2000. "Bifurcation Routes to Volatility Clustering," CeNDEF Working Papers 00-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    12. Dieci, Roberto & Foroni, Ilaria & Gardini, Laura & He, Xue-Zhong, 2006. "Market mood, adaptive beliefs and asset price dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 520-534.
    13. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    14. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    15. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    16. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    17. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    18. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    19. Fabio Tramontana, 2013. "The role of cognitively biased imitators in a small scale agent-based financial market," DEM Working Papers Series 029, University of Pavia, Department of Economics and Management.
    20. Dercole, Fabio & Radi, Davide, 2020. "Does the “uptick rule” stabilize the stock market? Insights from adaptive rational equilibrium dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ams:ndfwpp:03-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cees C.G. Diks (email available below). General contact details of provider: https://edirc.repec.org/data/cnuvanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.