IDEAS home Printed from https://ideas.repec.org/p/ams/cdws01/3a.3.html
   My bibliography  Save this paper

Maximum Likelihood Estimations of SDE Dynamics Based on Discrete Time Data How well does the Euler Method Perform?

Author

Listed:
  • Chin-Ying Hsiao

    (University of Bielefeld)

  • Willi Semmler

Abstract

This paper employs maximum likelihood (ML) estimations to obtain parameters for stochastic differential equations (SDE). Three discretization methods for approximating SDE solutions are applied in the maximum likelihood estimations: the Euler method, the Milstein method and the Ozaki method. A ML estimation based on continuous time data serves as benchmark model for the theoretical treatment of the SDE parameter estimation. It can be approximated by the ML estimation using the Euler method as the observation steps become finer and finer. The performances of the ML estimations using the three discretization methods are compared and evaluated by using the example of \ a SDE model for the short-term-interest-rate. As an evaluation criterion we take the errors of the one-step-ahead predictions. We show that the predictions of the Euler method and of the Ozaki method are equivalent in estimating the parameters of the SDE process of the short-time-interest-rate. Numerically the magnitude of the prediction errors of the Euler method and the Milstein method are quite similarly. As it turns out the Euler method is not inferior to the other two methods for our chosen performance criterion.

Suggested Citation

  • Chin-Ying Hsiao & Willi Semmler, 2001. "Maximum Likelihood Estimations of SDE Dynamics Based on Discrete Time Data How well does the Euler Method Perform?," CeNDEF Workshop Papers, January 2001 3A.3, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  • Handle: RePEc:ams:cdws01:3a.3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ams:cdws01:3a.3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/cnuvanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.