IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2022021.html
   My bibliography  Save this paper

Polynomial Series Expansions and Moment Approximations for Conditional Mean Risk Sharing of Insurance Losses

Author

Listed:
  • Denuit, Michel

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Robert, Christian Y.

Abstract

This paper exploits the representation of the conditional mean risk sharing allocations in terms of size-biased transforms to derive effective approximations within insurance pools of limited size. Precisely, the probability density functions involved in this representation are expanded with respect to the Gamma density and its associated Laguerre orthonormal polynomials, or with respect to the Normal density and its associated Hermite polynomials when the size of the pool gets larger. Depending on the thickness of the tails of the loss distributions, the latter may be replaced with their Esscher transform (or exponential tilting) of negative order. The numerical method then consists in truncating the series expansions to a limited number of terms. This results in an approximation in terms of the first moments of the individual loss distributions. Compound Panjer-Katz sums are considered as an application. The proposed method is compared with the well-established Panjer recursive algorithm. It appears to provide the analyst with reliable approximations that can be used to tune system parameters, before performing exact calculations.

Suggested Citation

  • Denuit, Michel & Robert, Christian Y., 2022. "Polynomial Series Expansions and Moment Approximations for Conditional Mean Risk Sharing of Insurance Losses," LIDAM Reprints ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2022021
    DOI: https://doi.org/10.1007/s11009-021-09881-7
    Note: In: Methodology and Computing in Applied Probability, 2022, vol. 24, p. 693-711
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2022021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.